Loading...
Search for: optomechanics
0.008 seconds
Total 39 records

    The Behavior of an Optomechanical System with Two Mechanical Modes in the Presence of Nonlinear Medium

    , M.Sc. Thesis Sharif University of Technology Darvishi, Morteza (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    A cavity optomechanical system is created when the resonance frequency of an optical cavity is influenced by the position of a mechanical oscillator. To observe quantum effects and quantum applications of these systems, cooling of mechanical mode(s) participating in these interactions is very important. At first, the dissertation focus on the trend that people were trying to study radiation pressure theoretically and experimentally and then present classical and the quantum picture of radiation pressure. Next, the diverse geometries are based on the optomechanical interaction are described concisely. Fabry-Perot cavity with one degree of freedom has considered and then the Stokes and The... 

    Trapping, Levitation, and Optomechanics of Nanoparticles

    , Ph.D. Dissertation Sharif University of Technology Jazayeri, Amir Mohammad (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    The electromagnetic (EM) force is the pivot on which this thesis revolves. We inspect different formulations of the distribution of the EM force (and momentum) inside matter, and show that the Einstein-Laub force density is incompatible with special relativity. We study the exerted EM force on small particles in depth, and explain when the conventional dipole approximation fails to yield accurate results. We propose an all-dielectric structure which is able to trap very small dielectric particles (of diameters as small as 10 nm). One of the achievements of this thesis is an explanation for an adverse phenomenon observed in many experiments on the optomechanical systems employing... 

    Theoretical Investigation Of Chaotic Behavior In Optical Microresonators

    , Ph.D. Dissertation Sharif University of Technology Vahedi, Mohammad (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    In this thesis, chaotic behavior of a photonic micro-resonator is investigated. First, a Lagrangian formulation is introduced for the system. Then, by applying a multi-reflection method, a closed formula is obtained for the radiation pressure. Use of this equation in the coupled differential equations describing dynamics of the problem gives us a suitable model for exploring the behavior of the micro-resonator. In this stage, we compare our results with experimental data too. On the other hand, using above mentioned formulation, chaotic behavior of the micro-resonator is investigated using numerical method. Finally, a period-doubling route to chaos appears in our results as is observed in... 

    Entanglement in a Fabry-Perot Cavity with one Mechanical Degree of Freedom in the Presence of a Quantum Dot and the Laser Phase Noise

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mohammad Hossein (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    Coupling of optical and mechanical degrees of freedom through radiation pressure was, first, observed in the experiments for detection of gravitational waves. Recent experimental advances have granted reality to the long-hankered-after coupling between microscopic and macroscopic systems. In the first step, this thesis will review different aspects of cavity Optomechanics, such as: cooling, side-band formation and dynamics of an Optomechanical cavity. Then we will go further and study the Optomechanical dynamics of a cavity in the presence of an atom. To do so, we will analyze the entanglement, created between the center of mass motion of the atom and the mirror and will probe into its... 

    Green’s Function Formulation for Studying Optomechanics of Subwavelength Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Abbassi, Mohammad Ali (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis, we study optomechanics of subwavelength nanoparticles based on the Green's function formulation. First, we investigate the optical force exerted upon Rayleigh particles in the free space using the dipole approximation method. Then, we present a new method based on the Taylor expansion of the polarization field to calculate the optical forces beyond the Rayleigh regime. Subsequently, we study the optical force exerted upon Rayleigh particles in non-free spaces, and model the backaction effect using the scattering Green's function. We show that the backaction effect can modify the polarizability of the particle and thereby can affect the gradient force, radiation pressure, and... 

    Modeling Optomechanical Behavior of Optical Metasurfaces Subject to Light and Elastic Deformation

    , M.Sc. Thesis Sharif University of Technology Talebi Habibabadi, Sajjad (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Optical metasurfaces are 2D structures of a repetitive arrangement of a number of nanoparticles that are artificially constructed and do not exist in nature. Important applications of optical metasurfaces are meta lenses, flexible solar cells and extremely small antennas. Fabricating surfaces with nanoparticles of proper geometry under light radiation along with elastic deformation, we can have optical metasurfaces with selective reflection or transparency in the visible spectrum. The aim of this project is modeling of an optical metasurface with elastic deformation leading to change of color and transparency. For this purpose, assuming vertical light radiation and linear polarization, we... 

    Optimal control of the power adiabatic stroke of an optomechanical heat engine

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 94, Issue 2 , 2016 ; 15393755 (ISSN) Bathaee, M ; Bahrampour, A. R ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained  

    Quench dynamics in one-dimensional optomechanical arrays

    , Article Physical Review A ; Volume 101, Issue 2 , 2020 Raeisi, S ; Marquardt, F ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    Nonequilibrium dynamics induced by rapid changes of external parameters is relevant for a wide range of scenarios across many domains of physics. For waves in spatially periodic systems, quenches will alter the band structure and generate new excitations. In the case of topological band structures, defect modes at boundaries can be generated or destroyed when quenching through a topological phase transition. Here, we show that optomechanical arrays are a promising platform for studying such dynamics, as their band structure can be tuned temporally by a control laser. We study the creation of nonequilibrium optical and mechanical excitations in one-dimensional arrays, including a bosonic... 

    Critical ambient pressure and critical cooling rate in optomechanics of electromagnetically levitated nanoparticles

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 38, Issue 12 , 2021 , Pages 3652-3662 ; 07403224 (ISSN) Jazayeri, A. M ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    The concept of critical ambient pressure is introduced in this paper. The particle escapes from its trap when the ambient pressure becomes comparable with or smaller than a critical value, even if the particle motion is cooled by one of the feedback cooling (or cavity cooling) schemes realized so far. The critical ambient pressure may be so small that it is not a limiting factor in ground-state cooling, but critical feedback cooling rates, which are also introduced in this paper, are limiting factors. The particle escapes from its trap if any of the feedback cooling rates (corresponding to the components of the particle motion) becomes comparable with or larger than its critical value. The... 

    Opto-Mechanical Oscillations in Fabry-Perot Cavity With Two Mechanical Degrees of Freedom

    , M.Sc. Thesis Sharif University of Technology Golshani Gharyeh Ali, Mojtaba (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    The coupling of optical and mechanical degrees of feedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying the modifications of mechanical dynamics provided by radiation pressure. First, this thesis reviews the consequences of dynamic back-action in optical microcavities with mechanical degree of feedom, and presents a unified treatment of its two manifestations: the parametric instability (mechanical amplification or oscillation) and radiation pressure back-action cooling. Then, by considering the Fabry-Perot cavity with two movable mirrors, and using Multi-Reflection Method, we... 

    Effect of higher-order waves in parametric oscillatory instability in optical cavities

    , Article Physica Scripta ; Volume 83, Issue 4 , 2011 ; 00318949 (ISSN) Abdi, M ; Bahrampour, A. R ; Sharif University of Technology
    Abstract
    A new strict proposal for determining radiation pressure coupling to optical resonator devices has been developed. Our evidence shows that the effect of the anti-Stokes wave cannot be neglected. It is shown that Stokes and anti-Stokes frequencies of all orders will participate in the optomechanical effect. Furthermore, we have shown that for the input pump power, there exists a threshold value for instability behavior. Radiation pressure can couple mechanical modes of a cavity to its optical modes, leading to parametric oscillation instability. Here we present an approximate analysis of such a nonlinear effect with Hamilton's least action principle. Loss in every mode has been taken into... 

    Driving of Quantum Hamiltonian Relative to The One Dimentional Cavity With Oscilating Mirror and Semi-Transparent Mirror

    , M.Sc. Thesis Sharif University of Technology Bathaee, Marzieh Sadat (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    The concept of entanglement exists in the common area of the quantum optics and quantum information. Quantum optics is the best tools for investigating of this quantum informational phenomenon experimentally. One of the instruments that let us observes experimentally macroscopy entangeled state is Fabry-Perot Cavity. Striking of photons with the mirror of cavity transfer effective mommentom to it, and oscilating of mirror creates new modes: stocks and anti-stocks modes. Studing quantum state of these modes shows the entangling between photon and phonon (oscilating of mirror) modes. We assume that light beam enters the cavity from a semi-transparent mirror. So cavity is the system with... 

    Liquid color recognition by using an optical reflection system

    , Article Journal of Applied Sciences ; Volume 12, Issue 18 , 2012 , Pages 1917-1924 ; 18125654 (ISSN) Siadat, M ; Golnabi, H ; Sharif University of Technology
    ANSInet  2012
    Abstract
    Operation of an optomechanical system for color reflection study is reported. The reported system consists of a double-fiber optical design and an electro-mechanical scanning system. In the double-fiber arrangement one fiber transmits the source light to the target surface and the second one sends the reflected light off the sample target to a photodetector. By scanning the double-fiber probe in one-direction reflection properties of different color liquid samples are investigated in this study. A cubic cell made of glass material is used as the liquid container and reflection signals are compared for different filled color liquids. The maximum reflection signals are: for the yellow color... 

    Role of fiber arrangements in operation of a double-fiber opto-mechanical system

    , Article Journal of Applied Sciences ; Volume 11, Issue 16 , 2011 , Pages 3001-3007 ; 18125654 (ISSN) Entezari, E ; Golnabi, H ; Sharif University of Technology
    2011
    Abstract
    Determination of the surface structure using the light reflection is an important issue. The aim is to study such surface reflections using an opto-mechanical system. The effects of the fiber arrangements in the operation of an opto-pair probe system for surface profiling are described. The opto-mechanical testing system consists of a double-fiber optical probe design and an electro-mechanical scanning system. Reflection signals for the plane and cylindrical surfaces made with different curvatures and materials are investigated with both probes and the results are compared. The reflection signal for the plane surface is independent of the double-fiber orientation in probe but for the curves... 

    A theoretical multi-reflection method for analysis of optomechanical behavior of the Fabry-Perot cavity with moving boundary condition

    , Article Optics Communications ; Volume 284, Issue 19 , 2011 , Pages 4789-4794 ; 00304018 (ISSN) Bahrampour, A. R ; Vahedi, M ; Abdi, M ; Ghobadi, R ; Golshani, M ; Tofighi, S ; Parvin, B ; Sharif University of Technology
    Abstract
    The opto-mechanical coupling and the generation of Stokes and anti-Stokes frequencies in the in-band and intra-band regimes of operation of the Fabry-Perot cavity with a moving mirror on the basis of multi-reflection method (MRM) are described by a unique theory. The frequency characteristic function of the Fabry-Perot filter is modified. By increasing the amplitude of mirror oscillation the Fabry-Perot bandwidth increases and normal mode splitting occurred. The conversion efficiencies of the Stokes and anti-Stokes frequencies versus the mechanical amplitude of oscillation have an optimum value. Also, the delay function corresponding to the radiation pressure is obtained  

    Design and operation of a double-fiber scanning system for surface profiling

    , Article Optics and Lasers in Engineering ; Volume 49, Issue 8 , 2011 , Pages 1032-1039 ; 01438166 (ISSN) Golnabi, H ; Sharif University of Technology
    2011
    Abstract
    Design and operation of an opto-mechanical system for surface profiling are reported in this study. The reported system consists of a double-fiber optical design and an electro-mechanical scanning system. In this arrangement one fiber transmits the source light to the object surface and the second one transmits the light reflected off the surface to a photodetector. By scanning the double-fiber assembly in one-direction, reflection properties of different curved surfaces are investigated. Reflection signals for the cylindrical surfaces made with different curvatures and materials are reported. In order to see the effect of the surface material, for a fixed radius cylinder, the surface is... 

    Two mode mechanical non-Gaussian squeezed number state in a two-membrane optomechanical system

    , Article Optics Communications ; Volume 370 , 2016 , Pages 55-61 ; 00304018 (ISSN) Shakeri, S ; Mahmoudi, Z ; Zandi, M. H ; Bahrampour, A. R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    We consider an optomechanical system with two membranes when a bichromatic laser field with red-sideband and blue-sideband frequencies is applied in the single photon strong coupling regime. It is shown that using the mode selecting method and under the Lamb-Dicke approximation, motion of membranes can evolve to single or two mode squeezed number states. By considering the environmental effect, a Wigner function is plotted for understanding the conditions that lead to the generation of non-Gaussian states. The results show that, in this system, initial states of membranes are important to generation of non-Gaussian mechanical squeezed number states. © 2016 Elsevier B.V. All rights reserved  

    Multi sensing grasper for minimally invasive surgery

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 3 July 2011 through 7 July 2011, Budapest ; July , 2011 , Pages 344-349 ; 9781457708381 (ISBN) Fattahi, S. J ; Zabihollah, A ; Adldoost, H ; Sharif University of Technology
    2011
    Abstract
    In the present work, a multi sensing grasper has been developed for minimally invasive surgery with embedded ZnO piezoelectric and Fiber Bragg Grating sensors. In this model, a sensing patch equipped with three FBG sensors to sense the temperature in rage of 800 n.m and two separated FBG in range of 1550 m.m to detect the displacement in x and y directions. ZnO piezoelectric is highly sensitive to time and provides a good resistance to temperature. Therefore, this sensor is used for measuring the rate of strain and creep coefficient. A finite element approach based on the viscous material theory and plane displacement theory of anisotropic materials has been utilized to obtain the compliance... 

    Surface profiling using a double-fiber optical design

    , Article Optics and Lasers in Engineering ; Volume 48, Issue 4 , April , 2010 , Pages 421-426 ; 01438166 (ISSN) Golnabi, H ; Sharif University of Technology
    2010
    Abstract
    In this study surface profiling is performed by using a scanning system and an opto-pair fiber design. In this method one fiber transmits the laser light to the target and the second one transmits back the light reflected off the target to a photodetector. The monitoring of the reflected light signal from a surface is accomplished by converting the photon light into an electric signal and measuring by a digital multimeter. By scanning an object mounted on a XYZ-translational stage the reflection signal profiles are obtained for plane and curved surfaces. Output reflection signal variations in the X-, Y-, and Z-directions are measured for different plane and cylindrical surfaces and compared....