Loading...
Search for: paste-electrodes
0.003 seconds
Total 24 records

    Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid

    , Article Sensors and Actuators, B: Chemical ; Volume 137, Issue 2 , 2009 , Pages 669-675 ; 09254005 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    A carbon-paste electrode (CPE) modified with iron(II) phthalocyanine was used for the sensitive voltammetric determination of epinephrine (EN). The electrochemical response characteristics of the modified electrode toward EN, ascorbic acid (AA) and uric acid (UA) were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results show an efficient catalytic activity of the electrode for the electro-oxidation of EN, which leads to improvement of reversibility of the electrode response and lowering its overpotential by more than 100 mV. The effect of pH and potential sweep rate on the mechanism of the electrode process was investigated. The modified electrode exhibits an... 

    Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 624, Issue 1-2 , 2008 , Pages 73-78 ; 15726657 (ISSN) Mazloum Ardakani, M ; Taleat, Z ; Beitollahi, H ; Salavati Niasari, M ; Mirjalili, B. B. F ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2008
    Abstract
    A modified carbon paste electrode was prepared by incorporating TiO2 nanoparticles with bis[bis(salicylidene-1,4-phenylenediamine)molybdenum(VI)]. A mixture of fine graphite powder with 4 wt% of TiO2 nanoparticles was applied for the preparation of the carbon paste (by dispersing in paraffin) and finally modified with a molybdenum (VI) complex. The electrocatalytic oxidation of guanine (G) was investigated on the surface of the molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode (MCTNMCPE) using cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry (CHA) and chronocoloumetry (CHC). Using the modified electrode, the kinetics of G... 

    Electrocatalytic determination of sumatriptan on the surface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube

    , Article Bioelectrochemistry ; Volume 81, Issue 2 , 2011 , Pages 81-85 ; 15675394 (ISSN) Amiri, M ; Pakdel, Z ; Bezaatpour, A ; Shahrokhian, S ; Sharif University of Technology
    2011
    Abstract
    The electrochemical oxidation of sumatriptan on the surface of carbon paste electrode modified with multi-walled carbon nanotube and cobalt methyl-salophen complex is studied by using cyclic voltammetry and polarization studies. The results indicate that the drug is irreversibly oxidized in a one electron oxidation mechanism. It was found that the peak potential shifted negatively with increasing pH, confirms that H + participate in the oxidation process. The electrode is shown to be very effective for the detection of sumatriptan in the presence of other biological reductant compounds. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of... 

    Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes

    , Article Sensors and Actuators, B: Chemical ; Volume 133, Issue 2 , 12 August , 2008 , Pages 599-606 ; 09254005 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Bezaatpour, A ; Boghaei, D. M ; Sharif University of Technology
    2008
    Abstract
    The preparation and electrochemical performance of the carbon nanotube-paste electrode modified with salophen complexes of cobalt(III) perchlorate, with various substituents on the salophen ligand, as well as their electrocatalytic activity toward the oxidation of N-acetylcysteine (NAC) is investigated. Several Schiff base complexes containing various nucleophilic and electrophilic functional groups were prepared, and their electrochemical characteristics for the electro-oxidation of NAC were evaluated using cyclic and differential pulse voltammetry (CV and DPV). The results revealed, the modified electrodes show an efficient and selective electrocatalytic activity toward the anodic...