Loading...
Search for: petroleum
0.013 seconds
Total 571 records

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    Effect of small scale flow barriers heterogeneities and connate water on displacement efficiency of polymer floods to heavy oil reservoirs

    , Article Canadian Journal of Chemical Engineering ; Vol. 91, issue. 10 , October , 2013 , p. 1729-1740 ; ISSN: 00084034 Mohammadi, S ; Ghazanfari, M. H ; Masihi, M ; Vossoughi, S ; Sharif University Of Technology
    Abstract
    This work concerns a fundamental understanding of how heterogeneities induced by flow barriers and connate water affect the displacement efficiency of polymer floods, which has rarely been studied in the available literature. Here, a series of water/polymer injection experiments to heavy oil performed on five-spot glass micromodels containing randomly distributed shale structures is presented. It has been found that macroscopic efficiency of polymer flooding majorly depends on flow barriers distribution/configuration; shale content and geometrical characteristics; presence of connate water and wettability of medium. Microscopic pictures revealed that the main parts of connate water were... 

    Monitoring the role of fracture geometrical characteristics on fingering initiation/development during heavy oil miscible displacements in fractured porous media

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 35, issue. 12 , Aug , 2010 , p. 1129-1139 ; ISSN: 15567036 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Finger initiation/development at fluid-fluid interface during miscible floods can cause poor displacement efficiency, which is undesirable in enhanced oil recovery processes. In this work, a series of hydrocarbon injection experiments performed on 5-spot glass micromodels that were initially saturated with the heavy crude oil. The fractured micromodels with different fracture geometrical characteristics were used in the tests. High quality image analysis was applied to determine the fluid flow behavior, solvent front movement, and viscous fingering associated with solvent movement in matrix and fractures. Observations showed that higher solvent dispersion in the fractures rather than matrix... 

    Well Placement optimization using hybrid optimization technique combined with fuzzy inference system

    , Article Petroleum Science and Technology ; Vol. 31, issue. 5 , Dec , 2009 , p. 481-491 ; ISSN: 10916466 Darabi, H ; Masihi, M ; Sharif University of Technology
    Abstract
    Decision on the location of new wells through infill drilling projects is a complex problem that depends on the reservoir rock and fluid properties, well and surface facilities specifications, and economic measures. Conventional approach to address this is a direct optimization that uses the numerical flow simulation. However, this is computationally very extensive. In this study the authors use a hybrid genetic algorithm (HGA) optimization technique based on the genetic algorithm (GA) with helper functions based on the polytope algorithm and the neural network. This hybridization introduces hill-climbing into the stochastic search and makes use of proxies created and calibrated iteratively... 

    Rock Type Connectivity Estimation Using Percolation Theory

    , Article Mathematical Geosciences ; Vol. 45, issue. 3 , April , 2013 , p. 321-340 ; ISSN: 18748961 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    Abstract
    Complicated sedimentary processes control the spatial distribution of geological heterogeneities. This serves to make the nature of the fluid flow in the hydrocarbon reservoirs immensely complex. Proper modeling of these heterogeneities and evaluation of their connectivity are crucial and affects all aspects of fluid flow. Since the natural variability of heterogeneity occurs in a myriad of length scales, accurate modeling of the rock type connectivity requires a very fine scheme, which is computationally very expensive. Hence, this makes other alternative methods such as the percolation approach attractive and necessary. The percolation approach considers the hypothesis that a reservoir can... 

    Investigation of the effect of water based nano-particles addition on hysteresis of oil and-water relative permeability curves

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; June , 2012 , p. 267-277 Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sherafati, M ; Mashayekhi, L ; Sharif University of Technology
    Abstract
    It has been shown that one kind of poly silicon particles with sizes ranging from 10-500 nm, can be used in oilfields to enhance the oil recovery of water injection by 15-20%. The contributing mechanism might be reducing the interfacial tension which appears through improving relative permeability of the oil-phase. However, fundamental understanding of how hysteretic behavior of relative permeability curves affected by nanosilica particles remains a topic of debate in the literature. In this study, water as well as water dispersed nanosilica particles floods was performed on sandstone rock sample saturated by light crude oil supplied from one of Iranian oil reservoir, and the relative... 

    Investigating the mechanism of water inflow in gas wells in fractured gas reservoirs and designing a controlling method

    , Article SPE Production and Operations Symposium, Proceedings ; Vol. 1, issue , May , 2012 , p. 323-340 ; ISBN: 9781613992012 Jafari, I ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    The coning phenomenon usually occurs in water and gas cap drive reservoirs. Water coning in Iranian hydrocarbon reservoirs is one of the most important problems that affects the cumulative production, operation costs and causes environmental problems. Before producing from a reservoir, its fluids are in equilibrium and their contact surfaces remain unchanged, but after starting production from the reservoir, when the viscous force overcome gravitational force in vertical direction, contact surfaces will displace and coning will occur. So, the production rates will be controlled in a range that prevents entering water and gas to the production well. For this reason, investigation and modeling... 

    Experimental study of miscible displacement with hydrocarbon solvent in shaly heavy oil reservoirs using five-spot micromodels: The role of shale geometrical characteristics

    , Article Journal of Porous Media ; Vol. 15, issue. 5 , 2012 , p. 415-427 ; ISSN: 1091028X Mohammadi, S ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Most of the heavy oil reservoirs contain discontinuous shale which affects fluid flow through porous media as well as recovery efficiency during enhanced oil recovery processes. However, the role of shale geometrical characteristics (including orientation, length, discontinuity, and spacing of the shale) on oil recovery remains a topic of debate in the literature, especially during miscible injection of heavy oils and five-spot systems. Here, a series of hydrocarbon solvent injection tests have been performed on various five-spot glass micromodels containing barriers which are initially saturated with heavy oil under fixed flow rate conditions. Oil recoveries as a function of pore volumes of... 

    The estimation of formation permeability in a carbonate reservoir using an artificial neural network

    , Article Petroleum Science and Technology ; Vol. 30, issue. 10 , Apr , 2010 , p. 1021-1030 ; ISSN: 10916466 Yeganeh, M ; Masihi, M ; Fatholah,i S ; Sharif University of Technology
    Abstract
    Reservoir permeability is an important parameter that its reliable prediction is necessary for reservoir performance assessment and management. Although many empirical formulas are derived regarding permeability and porosity in sandstone reservoirs, these correlations cannot be accurately depicted in carbonate reservoir for the wells that are not cored and for which there are no welltest data. Therefore, having a framework for estimation of these parameters in reservoirs with neither coring samples nor welltest data is crucial. Rock properties are characterized by using different well logs. However, there is no specific petrophysical log for estimating rock permeability; thus, new methods... 

    Field Scale Characterization of Geological Formations Using Percolation Theory

    , Article Transport in Porous Media ; Vol. 92, issue. 2 , March , 2012 , p. 357-372 ; ISSN: 1693913 Sadeghnejad, S ; Masihi, M ; Shojaei, A ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    Abstract
    The connectivity of high conductivity pathways in geological formations depend on the spatial distribution of geological heterogeneities that may appear on various length scales. Appropriate modeling of this is crucial within in hydrology and petroleum systems. The approach taken in this study is to use percolation theory to quantify the connectivity, hydraulic conductivity, and breakthrough time behavior between an injector and a producer within such systems. In particular, a three-dimensional overlapping sandbody model is considered which assumes that the geological formation can be split into either conductive flow units (i. e., good sands) or non-conductive units (i. e., poor sands). The... 

    Utilization of percolation approach to evaluate reservoir connectivity and effective permeability: A case study on North Pars gas field

    , Article Scientia Iranica ; Vol. 18, issue. 6 , December , 2011 , p. 1391-1396 ; ISSN: 10263098 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; Shojaei, A ; King, P. R ; Sharif University of Technology
    Abstract
    Reservoir characterization, especially during early stages of reservoir life, is very uncertain, due to the scarcity of data. Reservoir connectivity and permeability evaluation is of great importance in reservoir characterization. The conventional approach to addressing this is computationally very expensive and time consuming. Therefore, there is a great incentive to produce much simpler alternative methods. In this paper, we use a statistical approach called the percolation theory, which considers a hypothesis wherein the reservoir can be split into either permeable (i.e. sand/fracture) or impermeable flow units (i.e. shale/matrix), and assumes that the connectivity of permeability... 

    Experimental investigation and evaluation of three-phase relative permeability models

    , Article Journal of Petroleum Science and Engineering ; Vol. 79, issue. 2-Jan , October , 2011 , p. 45-53 ; ISSN: 09204105 Masihi, M ; Javanbakht, L ; Bahaloo Horeh, F ; Rasaei, M. R ; Sharif University of Technology
    Abstract
    Petroleum production often involves simultaneous flow of three immiscible fluids through underground porous rock formation. In this work, we measure two- and three-phase relative permeabilities with which we examine the performance of various 3-phase relative permeability models. The rock-fluid systems used in these measurements are comprised of sandstone samples, oil (n-decane), water (Nacl, 6000. ppm) and gas (nitrogen). The measurements were carried out at 23 ± 1 °C and 5.44 MPa. Two- and three-phase relative permeability measurements were obtained using the steady-state technique. The three-phase experiments were conducted such that the flow rates of brine and gas were increased... 

    The gas-oil gravity drainage model in a single matrix block: A new relationship between relative permeability and capillary pressure functions

    , Article Journal of Porous Media ; Vol. 14, issue. 8 , 2011 , p. 709-720 ; ISSN: 1091028X Dejam, M ; Ghazanfari, M. H ; Kamyab, M ; Masihi, M ; Sharif University of Technology
    Abstract
    This work concerns modeling of gas-oil gravity drainage for a single block of naturally fractured reservoirs. The nonlinearity induced from saturation-dependant capillary pressure and relative permeability functions makes a gravity drainage model difficult to analytically and numerically solve. Relating the capillary pressure and relative permeability functions is a potential method to overcome this problem. However, no attempt has been made in this regard. In this study a generalized one-dimensional form of gas-oil gravity drainage model in a single matrix block, presented in the literature, is considered. In contrast with commonly used forms of capillary pressure and relative permeability... 

    Study on non-equilibrium effects during spontaneous imbibition

    , Article Energy and Fuels ; Vol. 25, issue. 7 , June , 2011 , p. 3053-3059 ; ISSN: 08870624 Mirzaei-Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Spontaneous imbibition of water into the matrix blocks because of capillary forces is an important recovery mechanism for oil recovery from naturally fractured reservoirs. In modeling this process, it has been assumed classically that local equilibrium is reached and, therefore, capillary pressure and relative permeability functions are only a function of water saturation, resulting in the appearance of the self-similarity condition. In some works published in the last 2 decades, it has, however, been claimed that local equilibrium is not reached in porous media, and therefore, opposite the classical local-equilibrium/self-similar approach, non-equilibrium effects should be taken into... 

    Investigation into the capability of a modern decline curve analysis for gas condensate reservoirs

    , Article Scientia Iranica ; Vol. 18, issue. 3 C , June , 2011 , p. 491-501 ; ISSN: 10263098 Sadeghi Boogar, A ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (Arps and Fetkovich) to modern (for the variation of operating conditions at the wellbore). The application of these techniques for analysis of the production data of a gas condensate reservoir may not yield reliable answers due to the fact that the flow of fluid in gas condensate reservoirs is not single-phase. This paper presents the treatment of a modern method of production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). For this purpose, a single-phase... 

    Scaling, multifractality, and long-range correlations in well log data of large-scale porous media

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 390, issue. 11 , June , 2011 , p. 2096-2111 ; ISSN: 03784371 Dashtian, H ; Jafari, G. R ; Sahimi, M ; Masihi, M ; Sharif University of Technology
    Abstract
    Three distinct methods, namely, the spectral density, the multifractal random walk approach, and the multifractal detrended fluctuation analysis are utilized to study the properties of four distinct types of well logs from three oil and gas fields, namely, the natural gamma ray emission, neutron porosity, bulk density, and the sonic transient time logs. Such well logs have never been analyzed by the methods that we utilize in the present study. The results indicate that the well logs exhibit multifractal characteristics, and the estimated Hurst exponents by the three methods are close to each other. Using multifractal detrended fluctuation analysis and the shuffled and surrogated data, we... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Vol. 50, issue. 3 , March , 2011 , p. 65-74 Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    The semi-analytical modeling and simulation of the VAPEX process of ""Kuh-e-Mond"" heavy oil reservoir

    , Article Petroleum Science and Technology ; Vol. 29, issue. 5 , Oct , 2009 , p. 535-548 ; ISSN: 10916466 Rasti, F ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    The vapor extraction process (or VAPEX) uses vaporized solvents injected into a horizontal well to form a vapor chamber within the reservoir. Vapor dissolves in the oil and enhances the oil production by decreasing the oil viscosity in heavy oil reservoirs. To evaluate the process we conduct a simulation study on an Iranian heavy oil reservoir called Kuh-e-Mond. In addition, a semi-analytical investigation of the VAPEX process has been performed. The idea is to perform VAPEX simulation for a laboratory model and find a methodology to compare the results of the simulator with the semi-analytical Butler's model. In particular, a semi-analytical dimensionless correlation for production rate... 

    Recovery improvement using water and gas injection scenarios

    , Article Petroleum Science and Technology ; Vol. 29, issue. 3 , Sep , 2009 , p. 290-300 ; ISSN: 10916466 Tafty, M. F ; Masihi, M ; Momeni, A ; Sharif University of Technology
    Abstract
    Water and miscible gas injection scenarios are considered in an Iranian oil reservoir for the purpose of recovery improvement. Firstly reservoir fluid modeling and modeling of a slim tube test were performed. Then, water alternating gas (WAG) injection was evaluated by optimizing the WAG half cycle and WAG ratio. Alternatively, hybrid WAG and separate injection of water and gas in the top and bottom of the reservoir were also investigated. The numerical simulation results showed that the optimum WAG, with half cycle of 1.5 years and WAG ratio of one, gave the highest recovery factor. Moreover, economic evaluation of these scenarios indicated that WAG had the highest net present value and was... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal...