Loading...
Search for: phase-change-material
0.005 seconds
Total 76 records

    Baseline Design of the Exergy Recovery and Solar Heating System at the Gas Pressure Reduction Station and its Technical, Economical, and Environmental Assessments

    , M.Sc. Thesis Sharif University of Technology Talaei, Mohammad (Author) ; Saboohi, Yadollah (Supervisor)
    Abstract
    As producing and consuming of natural gas has increased in recent years, improving natural gas distribution and transfer network systems has become vital. Pressure reduction station (PRS) is an important part of the natural gas network. Common PRSs are facing two issues: first is the pressure reduction technology, which is throttling valve that destroys the exergy of the high pressure flow. The solution is to utilize turbo-expander instead which can recover the energy. Second is the preheating technology which is boiler and water bath heater in the common systems that cause environmental problems. Using solar collectors is one of the best solution based on the literature. Since the solar... 

    CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule

    , Article International Journal of Refrigeration ; Volume 73 , 2017 , Pages 209-218 ; 01407007 (ISSN) Sattari, H ; Mohebbi, A ; Afsahi, M. M ; Azimi Yancheshme, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study is focused on CFD simulation of constrained melting of Phase Change Materials (PCMs) in a spherical container. To investigate the melting process of the PCM, its melting fraction was analyzed at different times. The results indicated the existence of thermally stable layers on the top of the sphere. Moreover, inspection of the calculated temperatures at different points along the vertical axis indicates the existence of some disturbances at the bottom of the sphere due to the natural convection. After the validation of the results, the effects of different parameters such as the surface temperature of the capsule, the initial temperature and the size of the spherical... 

    A novel integrated framework to evaluate greenhouse energy demand and crop yield production

    , Article Renewable and Sustainable Energy Reviews ; Volume 96 , 2018 , Pages 487-501 ; 13640321 (ISSN) Golzar, F ; Heeren, N ; Hellweg, S ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Greenhouses are complex systems that require considerable amounts of energy. In order to optimize their performance, it is necessary to reduce the amount of energy per unit of crop produced. This requires a combined assessment of greenhouse energy balance and crop growth, as well as their interaction. In this work, more than 30 existing greenhouse models are reviewed and different algorithms are combined to propose an integrated energy-yield model. The physical model of greenhouse energy demand is based on the dynamic energy and mass balance while yield production is based on a physiological crop model. The integrated model is validated with observed energy demand and crop yield datasets... 

    High-Performance predictable NVM-based instruction memory for real-time embedded systems

    , Article IEEE Transactions on Emerging Topics in Computing ; 2018 ; 21686750 (ISSN) Bazzaz, M ; Hoseinghorban, A ; Poursafaei, F ; Ejlali, A ; Sharif University of Technology
    IEEE Computer Society  2018
    Abstract
    Worst case execution time and energy consumption are two of the most important design constraints of real-time embedded systems. Many recent studies have tried to improve the memory subsystem of embedded systems by using emerging non-volatile memories. However, accessing these memories imposes performance and energy overhead and using them as the code memory could increase the worst case execution time of the system. In this paper, a new code memory architecture for non-volatile memories is proposed which reduces the effective memory access latency by employing memory access interleaving technique. Unlike common instruction access latency improvement techniques such as prefetching and... 

    A resistive ram-based FPGA architecture equipped with efficient programming circuitry

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 65, Issue 7 , 2018 , Pages 2196-2209 ; 15498328 (ISSN) Khaleghi, B ; Asadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Despite the considerable effort has been put on the application of Non-Volatile Memories (NVMs) in Field-Programmable Gate Arrays FPGAs, previously suggested designs are not mature enough to substitute the state of-the-art SRAM-based counterparts mainly due to the inefficient building blocks and/or the overhead of programming structure which can impair their potential benefits. In this paper, we present a Resistive Random Access Memory RRAM-based FPGA architecture employing efficient Switch Box (SB) and Look-Up Table (LUT) designs with programming circuitry integrated in both SB and LUT designs that creates area and power efficient programmable components while precluding performance... 

    Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system

    , Article Energy Conversion and Management ; Volume 163 , 2018 , Pages 187-195 ; 01968904 (ISSN) Mousavi, S ; Kasaeian, A ; Shafii, M. B ; Jahangir, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The purpose of the present study is to investigate the thermal performance of a photovoltaic/thermal system, integrated with phase change materials in porous medium. For this purpose, a metal foam was employed as porous medium and the performance of five different PCMs, as organic and inorganic, were examined as well. Moreover, the effects of different key parameters such as the mass flow rate, solar irradiance, inlet water temperature and inclination were studied. Finally, the simulation results were compared with a water-cooled photovoltaic/thermal without incorporating PCMs and porous medium, and thermal performance of the three PV/T cases were reported. The highest thermal efficiency of... 

    A year-round study of a photovoltaic thermal system integrated with phase change material in Shanghai using transient model

    , Article Energy Conversion and Management ; Volume 210 , 2020 Kazemian, A ; Salari, A ; Ma, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the study, the daily and monthly performance of a photovoltaic thermal system integrated with phase change material is investigated in Shanghai, China. A three-dimensional model of photovoltaic thermal system integrated with phase change material system is developed and numerically simulated. Water is considered as working fluid, and the fluid flow regime is laminar and incompressible. Both quasi-steady and transient models are compared together, and the transient model is selected because of its higher accuracy. Validation analysis is performed on the numerical model to show the reasonable agreement of current research compared to some other research. After obtaining the suitable... 

    Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis

    , Article Energy Conversion and Management ; Volume 205 , 2020 Salari, A ; Kazemian, A ; Ma, T ; Hakkaki Fard, A ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the current research, a three-dimensional photovoltaic thermal system integrated with phase change material system with nanofluids is investigated. The working fluids involved in this study include nano-magnesium oxide, multiwall carbon nano tube and hybrid (mixture of nano-magnesium oxide and nano-multiwall carbon nano tube) nanofluids dispersed in pure water. After comparing single-phase model and mixture model, the mixture model is used in the study and fluid flow regime in the collector is assumed to be laminar, fully develop, uniform and incompressible, to model the nanofluid in the system. A parametric analysis is conducted to examine the effect of various parameters such as working... 

    A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 145, Issue 2 , 2021 , Pages 245-268 ; 13886150 (ISSN) Ghoghaei, M. S ; Mahmoudian, A ; Mohammadi, O ; Shafii, M. B ; Jafari Mosleh, H ; Zandieh, M ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In modern heat transfer systems, thermal storage not only causes the balance between demand and supply, but also improves the heat transfer efficiency in these systems. In the present study, a comprehensive review of the applications of micro- or nano-encapsulated phase change slurries (MPCMs/NPCMs), as well as their effects on thermal storage and heat transfer enhancement, has been conducted. MPCMs/NPCMs have a myriad of applications and various usages such as pipe and channel flows, photovoltaic/thermal, solar heaters, air conditioning systems, storage tanks and heat pipes that have been categorized and studied. It was found that there are many advantageous adding MPCM/NPCM to the base... 

    Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles

    , Article Journal of Energy Storage ; Volume 34 , 2021 ; 2352152X (ISSN) Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, A. R. D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Latent thermal energy storage dependent on Phase Change Materials (PCMs) proposes a possible answer for modifying the availability of alternating energy from renewable sources such as wind and solar. They can possibly store large amounts of energy in moderately tiny dimensions as well as through almost isothermal procedures. Notwithstanding, low thermal conductivity values is a significant disadvantage of the present PCMs which critically restrict their energy storage usage. Likewise, this unacceptably decreases the solidification/melting rates, hence causing the system response time to be excessively lengthy. The present examination accomplished a better PCM solidification rate with a... 

    A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 2115-2127 ; 09601481 (ISSN) Khalilmoghadam, P ; Rajabi Ghahnavieh, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a latent heat storage unit and built-in condenser were integrated with a solar still. Storage of dissipated latent heat of vapor during the day and using it after sunset prolongs system operation. During the day, the entire solar radiation was consumed to heat the saline water and only the heat coming from the condensation of vapor was stored in the phase change material (PCM). The dissipated heat from the condenser body was transferred to the PCM and stored. Additionally, the existence of PCM on the outer surfaces of the condenser prevented the rise of condenser wall temperature during the day and kept the condenser temperature low. After sunset, the heat stored in the PCM... 

    Modeling and optimization of a multiple (cascading) phase change material solar storage system

    , Article Thermal Science and Engineering Progress ; Volume 23 , 2021 ; 24519049 (ISSN) Nekoonam, S ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Utilization of heat storage units in solar energy systems can resolve the challenge of fluctuation and uncertainty of the solar energy. Phase change materials (PCMs) are used as the storage media for solar energy storage systems. In this research, a system including of a solar collector and a PCM-based cascaded energy storage unit was numerically investigated. Air was used as the heat transfer fluid (HTF) and three paraffin-based materials (RT50, RT65, and RT80) were used as PCM for the energy storage unit. The investigated system mainly operates between 15 °C and 90 °C and considering different PCMs, the selected PCMs were appropriate. Paraffin-based PCMs also present acceptable thermal... 

    Performance analysis and transient simulation of a vapor compression cooling system integrated with phase change material as thermal energy storage for electric peak load shaving

    , Article Journal of Energy Storage ; Volume 35 , 2021 ; 2352152X (ISSN) Riahi, A ; Jafari Mosleh, H ; Kavian, S ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A vapor-compression cooling system utilizing PCM is studied whereby the electricity consumption peak load is shifted. More specifically, the dynamic performance of the cooling system with and without PCM is evaluated and is presented with details on the hottest day of the year in Tehran, Iran. The proposed system uses the cooling energy to freeze or “discharge” the PCM during nighttime when the cooling load is minimally needed and uses the stored cooling energy during the peak load hours by melting or “charging” the PCM. This leads to better performance during the peak load hours when higher cooling loads are required. Oleic acid was chosen as PCM. The simulation was performed in EES... 

    Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials

    , Article Solar Energy ; Volume 244 , 2022 , Pages 474-483 ; 0038092X (ISSN) Toufigh, V ; Samadianfard, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The renewed attention paid to rammed earth materials in recent decades is related to their sustainability, high thermo-buffering capacity and relatively low cost. The energy performance of rammed earth materials can be enhanced with stabilization. However, some of thermal enhancement methods have destructive side-effects. In the current study, the effect of three different methods was investigated on thirteen different alternatives of rammed earth materials to improve energy efficiency of buildings. These methods include using phase change materials, cementitious admixtures and external insulators. Thermo-dynamic parameters such as time lag, thermal conductivity and heat flux were measured... 

    Metal-organic frameworks (MOF) based heat transfer: A comprehensive review

    , Article Chemical Engineering Journal ; Volume 449 , 2022 ; 13858947 (ISSN) Moayed Mohseni, M ; Jouyandeh, M ; Mohammad Sajadi, S ; Hejna, A ; Habibzadeh, S ; Mohaddespour, A ; Rabiee, N ; Daneshgar, H ; Akhavan, O ; Asadnia, M ; Rabiee, M ; Ramakrishna, S ; Luque, R ; Reza Saeb, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Higher than a standard level, the humidity provides a suitable environment for the pathogenic microorganisms to grow and increases energy consumption for cooling, increasing greenhouse gas emissions. Desiccant air-conditioning (DAC) is an effective method to reduce humidity and energy simultaneously. Conventional desiccants are not suitable for use as a desiccant in building air conditioners, mainly because of high regeneration temperature and other issues such as limited equilibrium capacity and hydrothermal and cyclic instability. Metal-organic frameworks (MOFs) are a novel class of porous crystalline materials without the disadvantages of traditional desiccants. They benefit from a huge... 

    Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation

    , Article Applied Thermal Engineering ; Volume 161 , 2019 ; 13594311 (ISSN) Jafari Mosleh, H ; Ahmadi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One of the efficient solar energy harvesting technics is the parabolic trough concentrated solar power plant. However, if the concentrated solar power plant were not equipped with a storage system, the power plant capacity factor would be deficient. Latent thermal energy storage system using phase change material (PCM) is a high energy density storage system to provide durable energy with a constant temperature. In this study, first, a dynamic analysis is performed implementing TRNSYS software on the parabolic trough concentrated solar power plant located in Shiraz, Iran. Consequently, this system is assisted by the latent thermal energy storage system to improve its performance and capacity...