Loading...
Search for: phase-interfaces
0.008 seconds

    Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding

    , Article Journal of Materials Science ; Volume 44, Issue 5 , 2009 , Pages 1264-1274 ; 00222461 (ISSN) Dourandish, M ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    Recently, co-powder injection molding process (2C-PIM) has attained considerable interest to fabricate complex-shaped functional materials. The aim of this work is to study the sintering compatibility between nanocrystalline yttria-stabilized zirconia (3Y-TZP) and PIM grade 430L stainless steel (SS) powders, which is the utmost important step in the 2C-PIM process. To evaluate the mismatch strain development during the co-sintering, the isothermal and nonisothermal behaviors of the ceramic and metal powders were studied. Small bilayers of 3Y-TZP/430L were made by a powder metallurgy technique and the feasibility of simultaneous sintering and joining of the composite layer was examined.... 

    Effects of elastic contributions on the evolution of nano-structure Al3Sc phase: A phase-field study

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1539-1547 ; 10263098 (ISSN) Ebrahimi, Z ; Ebrahimi, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    A micromechanical phase-field model is utilized to study the evolution of nanostructure Al3Sc phase in Al-Sc alloy. We study the formation of Al3Sc precipitates in an Al-Sc alloy by using an elastic phase-field model. Since the precipitates of Al3Sc phase are fully coherent with the Al matrix, the elastic energy will have an inuence on the resulting morphology. We have studied the effects of elastic strain energies on shape evolution of Al3Sc phase, numerically. The simulated nano-structures evolve from spherical to cubic shapes. The equilibrium shape of the coherent Al3Sc phase is found to be determined by minimizing the sum of the elastic and interfacial energies through the phase-field... 

    The gas-oil interfacial behavior during gas injection into an asphaltenic oil reservoir

    , Article Journal of Chemical and Engineering Data ; Volume 58, Issue 9 , 2013 , Pages 2513-2526 ; 00219568 (ISSN) Escrochi, M ; Mehranbod, N ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Oil displacement and recovery efficiency during gas injection depends on the competition between driving forces and capillary resistance that is governed by gas-oil interfacial behavior. Detailed study of the interfacial forces during gas injection is the main objective of this research work. The effects of injecting gas composition and the possibility of asphaltene precipitation in a wide pressure range were determined through comprehensive experimental study. This was performed by measurement of interfacial tension of a highly asphaltenic Iranian crude oil in three surrounding gas mediums. The results showed that as pressure increases, the rate to reach miscibility reduces in the vicinity... 

    Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia-ceria nanocomposites

    , Article Langmuir ; Volume 38, Issue 30 , 2022 , Pages 9195-9209 ; 07437463 (ISSN) Esmaeilzadeh, P ; Zandi, A ; Ghazanfari, M. H ; Khezrnejad, A ; Fatemi, M ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The creation of surfaces with various super nonwetting properties is an ongoing challenge. We report diverse modifications of novel synthesized zirconia-ceria nanocomposites by different low surface energy agents to fabricate nanofluids capable of regulating surface wettability of mineral substrates to achieve selective superhydrophobic, superoleophobic-superhydrophilic, and superamphiphobic conditions. Surfaces treated with these nanofluids offer self-cleaning properties and effortless rolling-off behavior with sliding angles ≤7° for several liquids with surface tensions between 26 and 72.1 mN/m. The superamphiphobic nanofluid coating imparts nonstick properties to a solid surface whereby... 

    Laboratory evaluation of nitrogen injection for enhanced oil recovery: Effects of pressure and induced fractures

    , Article Fuel ; Volume 253 , 2019 , Pages 607-614 ; 00162361 (ISSN) Fahandezhsaadi, M ; Amooie, M. A ; Hemmati Sarapardeh, A ; Ayatollahi, S ; Schaffie, M ; Ranjbar, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Nitrogen has emerged as a suitable alternative to carbon dioxide for injection into hydrocarbon reservoirs worldwide to enhance the recovery of subsurface energy. Nitrogen typically costs less than CO2 and natural gas, and has the added benefit of being widely available and non-corrosive. However, the underlying mechanisms of recovery following N2 injection into fractured reservoirs that make up a large portion of the world's oil and gas reserves are not well understood. Here we present the laboratory results of N2 injection into carbonate rocks acquired from a newly developed oil reservoir in Iran with a huge N2-containing natural gas reservoir nearby. We investigate the effectiveness of N2... 

    The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Dynamic behavior of fluid-fluid interactions can potentially affect the performance of any enhanced oil recovery (EOR) process including low salinity water flooding. In this work, dynamic interfacial tension (IFT) of crude-oil/brine system is measured in a wide range of salinity of sea water (SW), from 50-time diluted sea water (SW50D) to 2-time concentrated sea water (SW2C). Contrary to the most of published IFT trends in the literature, for the system under investigation here, as the brine salinity increases the crude-oil/brine IFT reduces, which cannot be explained using the existing theories. The lack of a physical model to explain the observed phenomena was the motivation to develop a... 

    On the phase field modeling of crack growth and analytical treatment on the parameters

    , Article Continuum Mechanics and Thermodynamics ; 2018 , Pages 1-18 ; 09351175 (ISSN) Farrahi, G. H ; Javanbakht, M ; Jafarzadeh, H ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    A thermodynamically consistent phase field model for crack propagation is analyzed. The thermodynamic driving force for the crack propagation is derived based on the laws of thermodynamics. The Helmholtz free energy satisfies the thermodynamic equilibrium and instability conditions for the crack propagation. Analytical solutions for the Ginzburg–Landau equation including the surface profile and the estimation of the kinetic coefficient are found. It is shown how kinetic coefficient affects the local stress field. The local critical stress for the crack propagation is calibrated with the theoretical strength which gives the value of the crack surface width. The finite element method is... 

    A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 155 , 2020 Fayzi, P ; Bastani, D ; Lotfi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Various mixtures of surfactants and nanosilica particles were investigated to assess their influence on rising bubble hydrodynamics. For this purpose, local velocities of rising bubbles were measured experimentally. Also, the effects of concentration of three types of surface-modified silica nanoparticles on density, viscosity, and surface tension of surfactant solutions were determined. Experimental results revealed that the simultaneous presence of nanoparticles and surfactant molecules led to the decrease of local velocities of rising bubbles. The presence of nanoparticles in surfactant solutions leads to a more reduction of bubble local velocity. This could be caused by the formation of... 

    Co-sintering of M2/17-4PH powders for fabrication of functional graded composite layers

    , Article Journal of Composite Materials ; Volume 44, Issue 4 , 2010 , Pages 417-435 ; 00219983 (ISSN) Firouzdor, V ; Simchi, A ; Sharif University of Technology
    2010
    Abstract
    Stepwise-graded composite layer of M2 tool stel and 17-4PH stainless steel was fabricated by a simple powder layering technique and the isothermal and nonisothermal sintering response of the bilayer were examined. It was shown that the materials exhibit poor compatibility during co-sintering, i.e., the amount of mismatch shrinkage is significant. An improved compatibility was obtained by adding 0.2 wt% B to the stainless steel powder. Formation of relatively dense layer at the bonding zone indicated an enhanced densification rate at the interface. Microstructural studies showed formation of a ferritic interface in M2/17-4PH composite and elongated grains with an intergranular boride phase... 

    Fuzzy clustering of vertical two phase flow regimes based on image processing technique

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 303-313 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan, M ; Bozorgmehry, R. B ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of industrial systems which work under two phase flow conditions, it's often needed to categorize flow into different regimes. In present work the experiments of two phase flow were done in a large scale test facility with length of 6m and 5cm diameter. Four main flow regimes were observed in vertical air-water two phase flows at moderate superficial velocities of gas and water: Bubbly, Slug, Churn and Annular. Some image processing techniques were used to extract information from each picture. This information include number of bubbles or objects, area, perimeter, height and width of objects (second phase).Also a texture feature extraction... 

    Three-dimensional simulation of hydrodynamics in a rotating disc contactor using computational fluid dynamics

    , Article Chemical Engineering and Technology ; Volume 32, Issue 1 , 2009 , Pages 93-102 ; 09307516 (ISSN) Ghaniyari Benis, S ; Hedayat, N ; Ziyari, A ; Kazemzadeh, M ; Shafiee, M ; Sharif University of Technology
    2009
    Abstract
    The 3D simulation of the hydrodynamic behavior of a rotating disc contactor (RDC) by means of computational fluid dynamics (CFD) was investigated for the n-butanol-succinic acid-water (BSW) system. For the two-phase liquid-liquid flow, the velocity distribution of the continuous phase and drop size distributions were determined using the k-ω turbulence model in conjunction with the Eulerian-Eulerian approach and MUSIG model. In this system in which the holdup of the dispersed phase is low, the continuous phase velocity was computed by simultaneously solving the Navier-Stokes equations beside the different models of turbulence. The motions of the dispersed phase was calculated while... 

    Roles of preoxidation, Cu2O particles, and interface pores on the strength of eutectically bonded Cu/α-Al2O3

    , Article Materials and Design ; Volume 30, Issue 4 , 2009 , Pages 1098-1102 ; 02641275 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of CuO layer thickness, Cu2O particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage except for the cooling interval between 900 and 1000 °C, the hydrogen gas was injected into furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10-8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that CuO layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3 kg/cm) in joint... 

    Alumina-copper eutectic bond strength: contribution of preoxidation, cuprous oxides particles and pores

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 263-268 ; 10263098 (ISSN) Ghasemi, H ; Faghihi Sani, M. A ; Kokabi, A. H ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles and pores on the mechanical properties and micro structure of an alumina-copper eutectic bond have been investigated. The furnace, atmosphere in the. first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the. furnace atmosphere was the. same as the first stage except that the cooling interval was between 900-100l°C and the hydrogen gas was injected into the. furnace, atmosphere. Finally, in the last stage, a vacuum furnace with 5 × 10-8 atra pressure was chosen for the bonding procedure. The peel strength of first stage specimens shows that a, cupric oxide layer with 320 ± 25 ran... 

    Alumina - copper eutectic bond strength: Contribution of preoxidation, cuprous oxides particles, and pores

    , Article 16th International Federation for Heat Treatment and Surface Engineering Congress, Brisbane, QLD, 30 October 2007 through 2 November 2007 ; Volume 32 , 2007 , Pages 90-97 ; 08832900 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage unless that in cooling between 900-1000 °C, the hydrogen gas was purged in furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10 -8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that cupric oxide layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3... 

    Evaluation of ceramic/ceramic joint interface prepared via brazing

    , Article Materials Forum, 18 October 2011 through 20 October 2011 ; Volume 35 , October , 2011 , Pages 20-30 ; 08832900 (ISSN) ; 9781876855369 (ISBN) Ghazi Daryani, A ; Nemati, A ; Sharif University of Technology
    Abstract
    Recent investigations show that ceramic/ceramic joints have high potential for applications in industry. Cost and difficulty in manufacturing complex components, either in one step or by joining of ceramic-metal and ceramic-ceramic, have inhibited more widespread use. It is important to know how to join components without problems and to understand the role of the interface as the main factor controlling the properties in these joints. The purpose of this paper was to investigate the joining of two ceramics with metal fillers (SiC to SiC and Al2O3 to Al2O3) and to investigate the interface of SiC/SiC and Al2O3/Al 2O3 with the same metal interlayer (Ag-Cu-Ti) and the effects on the... 

    Characterization of liquid bridge formed during gas-oil gravity drainage in fractured porous media

    , Article 16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018, 3 September 2018 through 6 September 2018 ; 2018 ; 9789462822603 (ISBN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Shoushtari, A ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2018
    Abstract
    Gas-oil gravity drainage that takes place in the gas-invaded zone of fractured reservoirs is the main production mechanism of gas-cap drive fractured reservoirs as well as fractured reservoirs subjected to gas injection. Interaction of neighboring matrix blocks through reinfiltration and capillary continuity effects controls the efficiency of gravity drainage. Existence of capillary continuity between adjacent matrix block is likely to increase the ultimate recovery significantly. Liquid bridge formed in fractures has a significant role in maintaining the capillary continuity between two neighboring matrix blocks. The degree of capillary continuity is proportional to capillary pressure in... 

    Effects of interface conditions on thermo-mechanical fields of multi-phase nano-fibers/particles

    , Article Journal of Thermal Stresses ; Volume 32, Issue 11 , 2009 , Pages 1166-1180 ; 01495739 (ISSN) Hatami Marbini, H ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    The stress field of a multi-phase spherical/cylindrical inhomogeneity with arbitrary interface bonding conditions, subjected to both a uniform temperature change and a uniform hydrostatic tension, is presented. Imperfect bonding conditions are modeled using linear spring model and coherent interface model. In nanosize inhomogeneities, since the surface energy is not negligible with respect to the bulk energy, the effect of surface stresses is incorporated into the formulation. Accurate estimates for the thermal stresses of a functionally graded coated inhomogeneity with perfect and /~or imperfect interfaces are given. The influence of coating stiffness, coating thickness and interface... 

    On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces

    , Article International Journal of Solids and Structures ; Volume 45, Issue 22-23 , 2008 , Pages 5831-5843 ; 00207683 (ISSN) Hatami Marbini, H ; Mohammadi Shodja, H ; Sharif University of Technology
    2008
    Abstract
    The stress fields of cylindrical and spherical multi-phase inhomogeneity systems with perfect or imperfect interfaces under uniform thermal and far-field mechanical loading conditions are investigated by use of the Boussinesq displacement potentials. The radius of the core inhomogeneity and the thickness of its surrounding coatings are arbitrary. The discontinuities in the tangential and normal components of the displacement at the imperfect interfaces are assumed to be proportional to the associated tractions. In this work, for the problems where the phases of the inhomogeneity system are homogeneous, the exact closed-form thermo-elastic solutions are presented. These solutions along with a... 

    Microstructure and mechanical properties of MoSi2-MoSi2 joints brazed by Ag-Cu-Zr interlayer

    , Article Materials and Design ; Volume 49 , August , 2013 , Pages 197-202 ; 02613069 (ISSN) Hatami Ramsheh, H ; Faghihi Sani, M. A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    The present work investigates joining of two MoSi2 parts through Cusil/Zr/Cusil interlayer with Cusil being a commercial eutectic of Cu-Ag alloy. The joining operation was implemented in an inert gas tube furnace by brazing. The brazing temperature ranged from 800 to 930°C while the operation lasted for 60min. Evaluation of joints strength through shear loading identified the maximum strength 60.31MPa for the brazed sample at 830°C. Interfacial microstructure was studied by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques. Applying the temperature of 830°C was led to a uniform dense joint consisting of various phases with... 

    Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles

    , Article Journal of Energy Storage ; Volume 34 , 2021 ; 2352152X (ISSN) Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, A. R. D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Latent thermal energy storage dependent on Phase Change Materials (PCMs) proposes a possible answer for modifying the availability of alternating energy from renewable sources such as wind and solar. They can possibly store large amounts of energy in moderately tiny dimensions as well as through almost isothermal procedures. Notwithstanding, low thermal conductivity values is a significant disadvantage of the present PCMs which critically restrict their energy storage usage. Likewise, this unacceptably decreases the solidification/melting rates, hence causing the system response time to be excessively lengthy. The present examination accomplished a better PCM solidification rate with a...