Loading...
Search for: phase-interfaces
0.008 seconds

    Calcium chloride adsorption at liquid-liquid interfaces: A molecular dynamics simulation study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 527 , 2017 , Pages 70-80 ; 09277757 (ISSN) Khiabani, N. P ; Bahramian, A ; Chen, P ; Pourafshary, P ; Goddard, W.A., III ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    We carried out molecular dynamics simulations (MD) to investigate the adsorption of calcium chloride (CaCl2) at n-hexane-water interfaces. We also measured the interfacial tensions (IFT) of the selected systems making use of the pendant-drop method. The histograms of hexane, water, and the ions indicate an electrical double layer (EDL) near the interface. The trend of the EDL indicates that chloride anions intend to adsorb to the interface more intrinsically than calcium cations. The measured interfacial width of the n-hexane-water interfaces decreases with the salt concentration. The average densities of the interfacial and bulk aqueous solutions demonstrate density heterogeneity in the... 

    Adsorption dynamics of surface-modified silica nanoparticles at solid-liquid interfaces

    , Article Langmuir ; Volume 38, Issue 41 , 2022 , Pages 12421-12431 ; 07437463 (ISSN) Khazaei, M. A ; Bastani, D ; Mohammadi, A ; Kordzadeh, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Understanding the adsorption dynamics of nanoparticles at solid-liquid interfaces is of paramount importance to engineer nanoparticles for a variety of applications. The nanoparticle surface chemistry is significant for controlling the adsorption dynamics. This study aimed to experimentally examine the adsorption of surface-modified round-shaped silica nanoparticles (with an average diameter of 12 nm), grafted with hydrophobic (propyl chains) and/or hydrophilic (polyethylene glycol chains) agents, at an aqueous solution-silica interface with spherical soda-lime glass beads (diameter of 3 mm) being used as adsorbents. While no measurable adsorption was observed for solely hydrophobic or... 

    The scattering of P-waves by a piezoelectric particle with FGPM interfacial layers in a polymer matrix

    , Article International Journal of Solids and Structures ; Volume 47, Issue 18-19 , 2010 , Pages 2390-2397 ; 00207683 (ISSN) Kamali, M. T ; Shodja, H. M ; Sharif University of Technology
    2010
    Abstract
    Propagation of P-wave in an unbounded elastic polymer medium which contains a set of nested concentric spherical piezoelectric inhomogeneities is formulated. The polymer matrix is made of Epoxy and is isotropic; each phase of the inhomogeneity is made of a different piezoelectric material and is radially polarized and has spherical isotropy. Note that the individual phases are homogeneous, and all interfaces are perfectly bonded. The scattered displacement and electric potentials in the matrix are expressed in terms of spherical wave vector functions and Legendre functions, respectively. The transmitted displacement and electric potentials within each phase of the piezoelectric particle are... 

    Interfacial instability of growing drop: experimental study and conceptual analysis

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 347, Issue 1-3 , 2009 , Pages 167-174 ; 09277757 (ISSN) Javadi, A ; Bastani, D ; Kragel, J ; Miller, R ; Sharif University of Technology
    Elsevier  2009
    Abstract
    Capillary pressure experiments were performed at the water/hexane interface including adsorption and mass exchange of hexanol under different conditions. The results from growing drop experiments show that instabilities due to Marangoni convection not only depend on the same parameters as have been reported for quasi-static interfaces, such as direction of mass transfer, distribution coefficient and ratio of diffusion coefficients, but also on the experimental conditions such as dispersed phase flow rate, capillary tip size, size of growing drop and its lifetime. Based on a new flow expansion model for mass transfer, a new approach is presented for data analysis, which includes the various... 

    Phase field approach for nanoscale interactions between crack propagation and phase transformation

    , Article Nanoscale ; Volume 11, Issue 46 , 2019 , Pages 22243-22247 ; 20403364 (ISSN) Jafarzadeh, H ; Levitas, V. I ; Farrahi, G. H ; Javanbakht, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The phase field approach (PFA) for the interaction of fracture and martensitic phase transformation (PT) is developed, which includes the change in surface energy during PT and the effect of unexplored scale parameters proportional to the ratio of the widths of the crack surface and the phase interface, both at the nanometer scale. The variation of these two parameters causes unexpected qualitative and quantitative effects: shift of PT away from the crack tip, "wetting" of the crack surface by martensite, change in the structure and geometry of the transformed region, crack trajectory, and process of interfacial damage evolution, as well as transformation toughening. The results suggest... 

    Two-dimensional numerical solution of steady withdrawal from the lens of freshwater in a tropical island

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Jabbari, E ; Haji Mohammadi, M ; Saeedpanah, I ; Sharif University of Technology
    2006
    Abstract
    The work presented here is a study of the steady withdrawal of water from the lens of freshwater situated above the ocean's salt water and within the island. It is the aim of this paper to investigate the process of withdrawal from the lens of freshwater with a view to establishing the critical flow values for withdrawal and the effects of sink location and density differences on these values, and also to determine the effects of relative density differences. Steady solutions are found for the shape of the interface between salt and freshwater beneath a tropical island. A Green_s function approach is used and proves to be much more robust than spectral methods. Computations of the surface... 

    Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles

    , Article Journal of Energy Storage ; Volume 34 , 2021 ; 2352152X (ISSN) Hosseinzadeh, K ; Montazer, E ; Shafii, M. B ; Ganji, A. R. D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Latent thermal energy storage dependent on Phase Change Materials (PCMs) proposes a possible answer for modifying the availability of alternating energy from renewable sources such as wind and solar. They can possibly store large amounts of energy in moderately tiny dimensions as well as through almost isothermal procedures. Notwithstanding, low thermal conductivity values is a significant disadvantage of the present PCMs which critically restrict their energy storage usage. Likewise, this unacceptably decreases the solidification/melting rates, hence causing the system response time to be excessively lengthy. The present examination accomplished a better PCM solidification rate with a... 

    Microstructure and mechanical properties of MoSi2-MoSi2 joints brazed by Ag-Cu-Zr interlayer

    , Article Materials and Design ; Volume 49 , August , 2013 , Pages 197-202 ; 02613069 (ISSN) Hatami Ramsheh, H ; Faghihi Sani, M. A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    The present work investigates joining of two MoSi2 parts through Cusil/Zr/Cusil interlayer with Cusil being a commercial eutectic of Cu-Ag alloy. The joining operation was implemented in an inert gas tube furnace by brazing. The brazing temperature ranged from 800 to 930°C while the operation lasted for 60min. Evaluation of joints strength through shear loading identified the maximum strength 60.31MPa for the brazed sample at 830°C. Interfacial microstructure was studied by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques. Applying the temperature of 830°C was led to a uniform dense joint consisting of various phases with... 

    Effects of interface conditions on thermo-mechanical fields of multi-phase nano-fibers/particles

    , Article Journal of Thermal Stresses ; Volume 32, Issue 11 , 2009 , Pages 1166-1180 ; 01495739 (ISSN) Hatami Marbini, H ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    The stress field of a multi-phase spherical/cylindrical inhomogeneity with arbitrary interface bonding conditions, subjected to both a uniform temperature change and a uniform hydrostatic tension, is presented. Imperfect bonding conditions are modeled using linear spring model and coherent interface model. In nanosize inhomogeneities, since the surface energy is not negligible with respect to the bulk energy, the effect of surface stresses is incorporated into the formulation. Accurate estimates for the thermal stresses of a functionally graded coated inhomogeneity with perfect and /~or imperfect interfaces are given. The influence of coating stiffness, coating thickness and interface... 

    On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces

    , Article International Journal of Solids and Structures ; Volume 45, Issue 22-23 , 2008 , Pages 5831-5843 ; 00207683 (ISSN) Hatami Marbini, H ; Mohammadi Shodja, H ; Sharif University of Technology
    2008
    Abstract
    The stress fields of cylindrical and spherical multi-phase inhomogeneity systems with perfect or imperfect interfaces under uniform thermal and far-field mechanical loading conditions are investigated by use of the Boussinesq displacement potentials. The radius of the core inhomogeneity and the thickness of its surrounding coatings are arbitrary. The discontinuities in the tangential and normal components of the displacement at the imperfect interfaces are assumed to be proportional to the associated tractions. In this work, for the problems where the phases of the inhomogeneity system are homogeneous, the exact closed-form thermo-elastic solutions are presented. These solutions along with a... 

    Characterization of liquid bridge formed during gas-oil gravity drainage in fractured porous media

    , Article 16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018, 3 September 2018 through 6 September 2018 ; 2018 ; 9789462822603 (ISBN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Shoushtari, A ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2018
    Abstract
    Gas-oil gravity drainage that takes place in the gas-invaded zone of fractured reservoirs is the main production mechanism of gas-cap drive fractured reservoirs as well as fractured reservoirs subjected to gas injection. Interaction of neighboring matrix blocks through reinfiltration and capillary continuity effects controls the efficiency of gravity drainage. Existence of capillary continuity between adjacent matrix block is likely to increase the ultimate recovery significantly. Liquid bridge formed in fractures has a significant role in maintaining the capillary continuity between two neighboring matrix blocks. The degree of capillary continuity is proportional to capillary pressure in... 

    Evaluation of ceramic/ceramic joint interface prepared via brazing

    , Article Materials Forum, 18 October 2011 through 20 October 2011 ; Volume 35 , October , 2011 , Pages 20-30 ; 08832900 (ISSN) ; 9781876855369 (ISBN) Ghazi Daryani, A ; Nemati, A ; Sharif University of Technology
    Abstract
    Recent investigations show that ceramic/ceramic joints have high potential for applications in industry. Cost and difficulty in manufacturing complex components, either in one step or by joining of ceramic-metal and ceramic-ceramic, have inhibited more widespread use. It is important to know how to join components without problems and to understand the role of the interface as the main factor controlling the properties in these joints. The purpose of this paper was to investigate the joining of two ceramics with metal fillers (SiC to SiC and Al2O3 to Al2O3) and to investigate the interface of SiC/SiC and Al2O3/Al 2O3 with the same metal interlayer (Ag-Cu-Ti) and the effects on the... 

    Roles of preoxidation, Cu2O particles, and interface pores on the strength of eutectically bonded Cu/α-Al2O3

    , Article Materials and Design ; Volume 30, Issue 4 , 2009 , Pages 1098-1102 ; 02641275 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of CuO layer thickness, Cu2O particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage except for the cooling interval between 900 and 1000 °C, the hydrogen gas was injected into furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10-8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that CuO layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3 kg/cm) in joint... 

    Alumina-copper eutectic bond strength: contribution of preoxidation, cuprous oxides particles and pores

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 263-268 ; 10263098 (ISSN) Ghasemi, H ; Faghihi Sani, M. A ; Kokabi, A. H ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles and pores on the mechanical properties and micro structure of an alumina-copper eutectic bond have been investigated. The furnace, atmosphere in the. first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the. furnace atmosphere was the. same as the first stage except that the cooling interval was between 900-100l°C and the hydrogen gas was injected into the. furnace, atmosphere. Finally, in the last stage, a vacuum furnace with 5 × 10-8 atra pressure was chosen for the bonding procedure. The peel strength of first stage specimens shows that a, cupric oxide layer with 320 ± 25 ran... 

    Alumina - copper eutectic bond strength: Contribution of preoxidation, cuprous oxides particles, and pores

    , Article 16th International Federation for Heat Treatment and Surface Engineering Congress, Brisbane, QLD, 30 October 2007 through 2 November 2007 ; Volume 32 , 2007 , Pages 90-97 ; 08832900 (ISSN) Ghasemi, H ; Kokabi, A. H ; Faghihi Sani, M. A ; Riazi, Z ; Sharif University of Technology
    2009
    Abstract
    The influences of cupric oxide layer thickness, cuprous oxide particles, and pores on mechanical properties and microstructure of alumina-copper eutectic bond have been investigated. The furnace atmosphere in the first stage was argon gas with 2 × 10-6 atm oxygen partial pressure. In the second stage, the furnace atmosphere was same as the first stage unless that in cooling between 900-1000 °C, the hydrogen gas was purged in furnace atmosphere. Finally, in the last stage a vacuum furnace with 5 × 10 -8 atm pressure was chosen for bonding procedure. Peel strength of first stage specimens shows that cupric oxide layer with 320 ± 25 nm thick generates the maximum peel strength (13.1 ± 0.3... 

    Three-dimensional simulation of hydrodynamics in a rotating disc contactor using computational fluid dynamics

    , Article Chemical Engineering and Technology ; Volume 32, Issue 1 , 2009 , Pages 93-102 ; 09307516 (ISSN) Ghaniyari Benis, S ; Hedayat, N ; Ziyari, A ; Kazemzadeh, M ; Shafiee, M ; Sharif University of Technology
    2009
    Abstract
    The 3D simulation of the hydrodynamic behavior of a rotating disc contactor (RDC) by means of computational fluid dynamics (CFD) was investigated for the n-butanol-succinic acid-water (BSW) system. For the two-phase liquid-liquid flow, the velocity distribution of the continuous phase and drop size distributions were determined using the k-ω turbulence model in conjunction with the Eulerian-Eulerian approach and MUSIG model. In this system in which the holdup of the dispersed phase is low, the continuous phase velocity was computed by simultaneously solving the Navier-Stokes equations beside the different models of turbulence. The motions of the dispersed phase was calculated while... 

    Fuzzy clustering of vertical two phase flow regimes based on image processing technique

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 303-313 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan, M ; Bozorgmehry, R. B ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of industrial systems which work under two phase flow conditions, it's often needed to categorize flow into different regimes. In present work the experiments of two phase flow were done in a large scale test facility with length of 6m and 5cm diameter. Four main flow regimes were observed in vertical air-water two phase flows at moderate superficial velocities of gas and water: Bubbly, Slug, Churn and Annular. Some image processing techniques were used to extract information from each picture. This information include number of bubbles or objects, area, perimeter, height and width of objects (second phase).Also a texture feature extraction... 

    Co-sintering of M2/17-4PH powders for fabrication of functional graded composite layers

    , Article Journal of Composite Materials ; Volume 44, Issue 4 , 2010 , Pages 417-435 ; 00219983 (ISSN) Firouzdor, V ; Simchi, A ; Sharif University of Technology
    2010
    Abstract
    Stepwise-graded composite layer of M2 tool stel and 17-4PH stainless steel was fabricated by a simple powder layering technique and the isothermal and nonisothermal sintering response of the bilayer were examined. It was shown that the materials exhibit poor compatibility during co-sintering, i.e., the amount of mismatch shrinkage is significant. An improved compatibility was obtained by adding 0.2 wt% B to the stainless steel powder. Formation of relatively dense layer at the bonding zone indicated an enhanced densification rate at the interface. Microstructural studies showed formation of a ferritic interface in M2/17-4PH composite and elongated grains with an intergranular boride phase... 

    A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 155 , 2020 Fayzi, P ; Bastani, D ; Lotfi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Various mixtures of surfactants and nanosilica particles were investigated to assess their influence on rising bubble hydrodynamics. For this purpose, local velocities of rising bubbles were measured experimentally. Also, the effects of concentration of three types of surface-modified silica nanoparticles on density, viscosity, and surface tension of surfactant solutions were determined. Experimental results revealed that the simultaneous presence of nanoparticles and surfactant molecules led to the decrease of local velocities of rising bubbles. The presence of nanoparticles in surfactant solutions leads to a more reduction of bubble local velocity. This could be caused by the formation of... 

    On the phase field modeling of crack growth and analytical treatment on the parameters

    , Article Continuum Mechanics and Thermodynamics ; 2018 , Pages 1-18 ; 09351175 (ISSN) Farrahi, G. H ; Javanbakht, M ; Jafarzadeh, H ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    A thermodynamically consistent phase field model for crack propagation is analyzed. The thermodynamic driving force for the crack propagation is derived based on the laws of thermodynamics. The Helmholtz free energy satisfies the thermodynamic equilibrium and instability conditions for the crack propagation. Analytical solutions for the Ginzburg–Landau equation including the surface profile and the estimation of the kinetic coefficient are found. It is shown how kinetic coefficient affects the local stress field. The local critical stress for the crack propagation is calibrated with the theoretical strength which gives the value of the crack surface width. The finite element method is...