Loading...
Search for: phenols
0.008 seconds
Total 157 records

    Investigation of Antioxidant & Antimicrobial Characteristics of Plums

    , M.Sc. Thesis Sharif University of Technology Biglary Makvandy, Fatemeh (Author) ; Maghsoody, Vida (Supervisor) ; Razavi, Jalil (Supervisor)
    Abstract
    Food rich in antioxidants plays an essential role in the prevention of diseases and plum is an example of these food .Our objective in this research was to determine the amount of variation in total phenolic compound present in plum fruits, so that it can be utilized in breeding programs to enhance the health benefits.Total phenolic content of the fruits, which were determined in 7 genotypes by using 4 solvents (water , methanol , ethanol , acetone) to extract phenolic compound, ranged from 178 to 497 mg/100 gr for methanol, from 306 to 407.33 mg/100 gr for ethanol , from 300 to 392 mg/100 gr for acetone and from 193 to 281.25 mg/100 gr for water. The results show that the methanol... 

    Biodegradation of Phenol from Saline Wastewater Using Moving Bed Biofilm Reactor

    , M.Sc. Thesis Sharif University of Technology Nakhli, Ali Akbar (Author) ; Borghei, Mahdi (Supervisor)
    Abstract
    Many industries such as olive oil mills, petroleum refineries, petrochemical plants and oil field operations generate saline wastewaters containing phenol. The aerobic moving bed biofilm reactor (MBBR) was investigated in this work in order to assess its performance for the degradation and chemical oxygen demand (COD) removal of phenol as the sole substrate from saline wastewater. The effect of inlet concentration of phenol (200–1200mg/L), hydraulic retention time (8–24 h), inlet concentration of salt (10-70gr/L), organic shock loading, hydraulic shock loading and salt shock loading were evaluated on the performance of two 10-liter MBBR seeded with mixed culture of active biomass... 

    Study of Thermal Behavior and mechanical properties of Phenolic/Clay Nanocomposits by Molecular Dynamics Simulations

    , M.Sc. Thesis Sharif University of Technology Hashemi, Niloofar (Author) ; Hosseni Kordkheili, Ali (Supervisor)
    Abstract
    Polymer/clay nanocomposites (PCNs) are multifunctional materials that have superior mechanical and thermal properties than polymer-based materials. These materials are obtained by adding small amounts of nanoclays to a polymer matrix. In this work, a molecular dynamics simulation was carried out to investigate the thermomechanical properties of thermosetting clay nanocomposites. The polymer matrix was composed of phenolic molecules with the crosslink density of 0.74, and different structures of PCNS were considered by varying the amount of polymer molecules. Molecular dynamics simulations of different nanocomposite structures were used to provide the atomistic insights, the molecular... 

    Investigation of the Effect of Different Parameters of Phenolic/Highsilica Composite Insulation on its Thermal Resistance

    , M.Sc. Thesis Sharif University of Technology Fadaei Reyhanabadei, Mohammad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    The purpose of this study, is to investigate and analyze the thermal resistance of phenolic composite insulation reinforced with high silica fibers. The properties of composites depend on the properties of their components .Therefore, by changing the type and percentage of its components, the performance of the insulation changes. Today, these types of composites are used as sacrificial thermal insulation in nozzles, motors, warheads or rocket launchers and rocket wings. In this project, phenolic composite bed flat samples have been made to test the thermal resistance and ablation. In this study, IL800 / 3 phenolic resin, high silica fabrics and 600 g / m2 carbon were used. Highsilica... 

    The Evaluation of Different Parameters on Fatigue Life of Carbon / Epoxy and Carbon / Phenolic Polymer Composite Rods under Tensile-pressure Loads

    , M.Sc. Thesis Sharif University of Technology Rastegar, Sajad (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    The aim of this dissertation is to analyze the tensile-stress fatigue of composite rods made of a combination of carbon-epoxy resin as well as carbon chopped-phenolic resin and to investigate the effect of different parameters on their fatigue life. The curing process is completely different in carbon / epoxy and carbon / phenolic composites, Carbon / Epoxy is a thermo-plastic composite, but carbon / phenolic is a thermo- set composite. Therefore, differences in the curing process, raw materials, changes in the volume percentage of resin and fibers, the effects of different loading during the production and curing process of the composite, cooling and heating rates during production can... 

    Antioxidant Production from Rice Bran and Optimization of the Process

    , M.Sc. Thesis Sharif University of Technology Arab, Fatemeh (Author) ; Alemzadeh, Iran (Supervisor) ; Maghsoudi, Vida (Supervisor)
    Abstract
    An antioxidant is a molecule capable of preventing the oxidation of other molecules and neutralizing free radicals. Free radicals are the root cause for many human diseases.Rice bran is one of the most important co-products in the rice milling.In this research antioxidant activity of two Iranian rice bran varieties Fajr and Tarem, extracted by three different solvents (methanol, ethanol and ethyl acetate),determined at different time of extraction by measurement of total phenolic content, free radical scavenging, inhabitation of linoleic acid peroxidation and reducing power. The methanolic extract of Fajr rice bran produced strong results in antioxidant activity. The amount of Total... 

    Bioregeneration of Granular activated carbon (GAC) contaminated with phenolic compounds

    , M.Sc. Thesis Sharif University of Technology Ahangar, Ata Ollah (Author) ; Vossoughi, Manouchehr (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    This project surveys bioregeneration of granular activated carbons contaminated with phenolic compounds. To carry out this survey, the procedure of phenol absorption on the surface of activated carbon was studied and their adsorption isotherms were calculated. In the first step, newly activated carbon was contaminated with phenol solution and optimum amount of carbon in phenol elimination was 0.5g. Then, the effect of time contact on phenol elimination was studied and eventually 1 hour of time contact was determined as the equilibrium time of phenol adsorption. In the second step, kinetics of adsorption of phenol and different stages of adsorption were studied. The results of this study... 

    Use of modified bentonite for phenolic adsorption in treatment of olive oil mill wastewater

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 30, Issue 5 , 2006 , Pages 613-619 ; 03601307 (ISSN) Mousavi, S. M ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    2006
    Abstract
    Natural and modified clays were applied as adsorbents for the removal of organic contaminants from wastewater. This study presents an investigation on the technical feasibility of using modified minerals that are named organoclay for treatment of dissolved substances, mainly polyphenols in olive mill wastewater. The different parameters such as applied cation dosage were effective on the removal of contaminants by these adsorbents (%CEC), pollutant concentration, pH and particle size of minerals. In this investigation bentonite particles were modified by stirring the clay with a long chain quaternary ammonium cation. Doses of the applied cation varied from zero to 1.5 times the clay CEC.... 

    Two nanostructured polymers: Polyaniline nanofibers and new linear-dendritic matrix of poly(citric acid)-block-poly(ethylene glycol) copolymers for environmental monitoring in novel biosensors

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 7 , Jul , 2013 , Pages 377-383 ; 00914037 (ISSN) Shamloo, A ; Vossoughi, M ; Alemzadeh, I ; Naeini, A. T ; Darvish, M ; Sharif University of Technology
    2013
    Abstract
    In this work two phenol biosensors, one based on polyaniline nanofibers (PNFs) and the other based on the newly created and introduced linear-dendritic matrix of poly(citric acid)-block-poly(ethylene glycol) copolymers (PCA-PEG-PCA), were chemically modified with horseradish peroxidase (HRP) enzyme. These phenol biosensors showed an oxidation peak at 0.55 V. The amperometric response for biosensors based on PNFs showed a linear response range from 2.5 × 10-6 to 2.5 × 10-5 mol/L, with a detection limit of 2.5 M phenol. Also, the amperometric response for a biosensor based on PCA-PEG-PCA showed a linear response range from 2.5 × 10-6 to 4 × 10-5 mol/L, with a detection limit of 1.5 M phenol  

    Treatment of olive mill wastewater by rotating biological contactor reactor

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Alemzadeh, I ; Nazemi, A ; Sharif University of Technology
    2006
    Abstract
    The removal performance of total poly phenols and orthodiphenols (o-diphenols) content in olive mill waste (OMW) was investigated with a three stages cross flow laboratory scale rotating biological contactor (RBC) in the present study. Due to high COD and other pollutant existed in the original OMW, before biological treatment of OMW by the RBC system, physico-chemical treatment was effected for COD and other pollutant reduction. Inoculation of RBC was effected by sludge from olive oil factory, and microbial acclimation was continued to 49 days and the system was adapted to about 300ppm of OMW poly phenols and o-diphenols. In biological treatment, effect of operating parameters such as... 

    The treatment of phenolic wastewater using a moving bed biofilm reactor

    , Article Process Biochemistry ; Volume 39, Issue 10 , 2004 , Pages 1177-1181 ; 00329592 (ISSN) Borghei, S. M ; Hosseini, S. H ; Sharif University of Technology
    2004
    Abstract
    Experiments were conducted to investigate the behaviour of moving bed biofilm reactor (MBBR) receiving a mixture of toxic (phenolic) wastewater. The study was carried out on laboratory scale using two MBBR reactors fed with synthetic wastewater. The wastewater was prepared by mixing a solution of molasses with a known amount of phenol and nutrients. Two MBBR units were operated simultaneously at different hydraulic retention times (HRT) of 24, 20, 16, 12 and 8 h while phenol concentration was in the range of 200, 400, 620 and 800 mg/l. Throughout the experiments the ratio of phenolic chemical oxygen demand (COD) concentration to total COD was changed from a ratio of 0.2 to a ratio of 1. The... 

    The synthesis of dibenzazocines via tandem dinucleophilic addition of phenols to quinolinium salts

    , Article Arkivoc ; Volume 2010, Issue 11 , Sep , 2010 , Pages 91-100 ; 1551-7012 (ISSN) Moghaddam, F. M ; Saeidian, H ; Kiamehr, M ; Mirjafary, Z ; Taheri, S ; Sharif University of Technology
    Arkat  2010
    Abstract
    Dibenzazocines were prepared via tandem dinucleophilic addition of phenols to quinolinium salts in good yields. The procedure is efficient, simple and the substrates are easily available  

    Theoretical investigation on antioxidant activity of bromophenols from the marine red alga Rhodomela confervoides: H-atom vs electron transfer mechanism

    , Article Journal of Agricultural and Food Chemistry ; Volume 61, Issue 7 , 2013 , Pages 1534-1541 ; 00218561 (ISSN) Javan, A. J ; Javan, M. J ; Tehrani, Z. A ; Sharif University of Technology
    2013
    Abstract
    Bromophenols are known as antioxidant radical scavengers for some biomolecules such as those in marine red alga. Full understanding of the role played by bromophenols requires detailed knowledge of the radical scavenging activities in probable pathways, a focus of ongoing research. To gain detailed insight into two suggested pathways, H-atom transfer and electron transfer, theoretical studies employing first principle quantum mechanical calculations have been carried out on selected bromophenols. Detailed investigation of the aforementioned routes revealed that upon H-atom abstraction or the electron transfer process, bromophenols cause an increase in radical species in which the unpaired... 

    The highest inhibition coefficient of phenol biodegradation using an acclimated mixed culture

    , Article Water Science and Technology ; Volume 73, Issue 5 , 2016 , Pages 1033-1040 ; 02731223 (ISSN) Mohseni, M ; Sharifi Abdar, P. S ; Borghei, S. M ; Sharif University of Technology
    IWA Publishing  2016
    Abstract
    In this study a membrane biological reactor (MBR) was operated at 25±1 °C and pH = 7.5±0.5 to treat synthetic wastewater containing high phenol concentrations. Removal efficiencies of phenol and chemical oxygen demand (COD)were evaluated at four various hydraulic retention times (HRTs) of 24, 12, 8, and 4 hours. The removal rate of phenol (5.51 kg-Phenol kg-VSS-1 d-1), observed at HRT of 4 h,was the highest phenol degradation rate in the literature.According toCODtests, therewere no significant organic matter in the effluent, and phenol was degraded completely by mixed culture. Substrate inhibition was calculated from experimental growth parameters using the Haldane, Yano, and Edward... 

    The comparision of Coprinus cinereus peroxidase enzyme and TiO 2 catalyst for phenol removal

    , Article Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering ; Volume 48, Issue 3 , 2013 , Pages 300-307 ; 10934529 (ISSN) Sarkhanpour, R ; Tavakoli, O ; Sarrafzadeh, M. H ; Kariminia, H. R ; Sharif University of Technology
    2013
    Abstract
    This article investigates phenol removal from an aqueous solution by using enzymatic and photocatalytic methods and the efficiency of these methods has been compared. In enzymatic and photocatalytic methods, Coprinus cinereus, peroxidase enzyme and commercial TiO2 powders (Degussa P-25) in aqueous suspension were used, respectively, in ambient temperature. The effects of different operating parameters such as duration of process, catalyst dosage or enzyme concentration, pH of the solution, initial phenol concentration and H2O2 concentration on both processes were examined. In enzymatic method, efficiency of degradation reached 100% within 5min, while in the photocatalytic method, the... 

    Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications

    , Article Journal of Cellular Physiology ; Volume 234, Issue 10 , 2019 , Pages 17212-17231 ; 00219541 (ISSN) Joshi, T ; Singh, A. K ; Haratipour, P ; Sah, A. N ; Pandey, A. K ; Naseri, R ; Juyal, V ; Farzaei, M. H ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    Diabetes affects a large population of the world. Lifestyle, obesity, dietary habits, and genetic factors contribute to this metabolic disease. A target pathway to control diabetes is the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. AMPK is a heterotrimeric protein with α, β, and γ subunits. In several studies, AMPK activation enhanced glucose uptake into cells and inhibited intracellular glucose production. Impairment of AMPK activity is present in diabetes, according to some studies. Drugs used in the treatment of diabetes, such as metformin, are also known to act through regulation of AMPK. Thus, drugs that activate and regulate AMPK are potential... 

    Synthesis of M/CuO (M = Ag, Au) from Cu based metal organic frameworks for efficient catalytic reduction of p-nitrophenol

    , Article Materials Chemistry and Physics ; Volume 198 , 2017 , Pages 374-379 ; 02540584 (ISSN) Akbarzadeh, E ; Falamarzi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    Metal Organic Frameworks (MOFs) have received enormous attention in catalysis field due to their special structures and various promising applications. One of the intriguing applications of MOFs is utilization of them as precursors for synthesis of metal oxide nanomaterials. Base on this strategy, in this work, we have applied Cu-MOF to prepare a series of noble metal nanoparticles (Ag and Au) decorated CuO (M/CuO) as efficient catalyst. As-prepared nanocomposites were characterized by various analytical techniques and their catalytic performances appraised by using of the catalytic reduction of p-nitrophenol to p-aminophenol as a reliable model reaction. Experimental results suggest that... 

    Synthesis of BiOI/ZnFe2O4-Metal-Organic Framework and g-C3N4-Based Nanocomposites for Applications in Photocatalysis

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 23 , 2019 , Pages 9806-9818 ; 08885885 (ISSN) Khasevani, S. G ; Gholami, M. R ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    A novel binary BiOI/ZnFe2O4 (BZ) with p-n heterojunction based on the different metal-organic framework (MOF) MIL-88B(Fe) and graphite carbon nitride (g-C3N4) as substrates has been designed. As-prepared ternary nanocomposites have been first obtained via a simple hydrothermal system and subsequently deposited onto the MOF and g-C3N4 substrates. The photoactivity of the ternary nanocomposites was evaluated by organic pollutants degradation under LED light. These characterization results indicated that BiOI as a p-type semiconductor was well deposited on the surface of ZnFe2O4 (n-type semiconductors). The p-n heterojunction photocatalyst (BZ) improved the valence band potential of ZnFe2O4 and... 

    Synthesis and characterization of a new group of Exo-coordinating o2n2-donor macrocycles

    , Article Australian Journal of Chemistry ; Volume 69, Issue 3 , 2016 , Pages 273-278 ; 00049425 (ISSN) Ghanbari, B ; Safarkoopayeh, B ; Kia, R ; Raithby, P.R ; Sharif University of Technology
    CSIRO  2016
    Abstract
    The reaction of 15-18 membered benzodiazacrown ethers with salicylaldehyde afforded n-membered O2N2-donor macrocyclic ligands mounted with 1,3-diazacyclohexane subrings (1-4) in high yields. The products were characterized by FT-IR, 1H, 13C NMR spectroscopy, elemental analyses, and single crystal X-ray studies. The solid state structures revealed strong intramolecular hydrogen bonding between the pendant phenolic group and the tertiary nitrogen of the corresponding macroring  

    Synthesis, characterization, electrochemical studies and catecholase-like activity of a series of mononuclear Cu(II), homodinuclear Cu(II)Cu(II) and heterodinuclear Cu(II)Ni(II) complexes of a phenol-based compartmental ligand

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 241, Issue 1-2 , 2005 , Pages 1-7 ; 13811169 (ISSN) Boghaei, D. M ; Behzad, M ; Bezaatpour, A ; Sharif University of Technology
    2005
    Abstract
    A series of previously reported mononuclear Cu(II) and homodinuclear Cu(II)Cu(II) complexes, as well as, novel mononuclear Cu(II), homodinuclear Cu(II)Cu(II), and heterodinuclear Cu(II)Ni(II) complexes of a phenol-based dinucleating ligand with two different N(amine)2O2 and N(imine)2O2 coordination sites, were synthesized and characterized by elemental analyses, infrared and electronic absorption spectroscopies and conductivity measurements. The electrochemical behavior and catecholase-like activity of the complexes were also studied using cyclic voltammetry and UV-vis spectrophotometry, respectively. Our results show that the dinuclear complexes are more effective catalysts in the oxidation...