Loading...
Search for: photocatalysis
0.01 seconds
Total 117 records

    Laser irradiation for controlling size of TiO2-Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide

    , Article Water Science and Technology ; Volume 80, Issue 5 , 2019 , Pages 864-873 ; 02731223 (ISSN) Abdollah, F ; Borghei, S. M ; Moniri, E ; Kimiagar, S ; Panahi, H. A ; Sharif University of Technology
    IWA Publishing  2019
    Abstract
    This study focused on the synthesis of TiO2-Zeolite nanocomposite through a sol-gel approach. The decrease in the size of the nanocomposite is considered a primary parameter to improve photocatalytic activity. In this regard, fabricated samples were exposed to laser irradiation (532 nm) for four different time intervals in order to investigate the size variation of the nanocomposite. FTIR, UV-Vis, XRD, DLS, SEM and EDX analyses were applied to characterize and determine the size of the products. An optimized nanocomposite sample, in term of the particle size, was used for photodegradation of 2,4-D herbicide from aqueous solution. Photodegradation was carried out under UV irradiation (12 W)... 

    Hydrogen peroxide-assisted photocatalysis under solar light irradiation: Interpretation of interaction effects between an active photocatalyst and H2O2

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue 7 , 2019 , Pages 2009-2014 ; 00084034 (ISSN) Feilizadeh, M ; Attar, F ; Mahinpey, N ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    In this work, the combination of H2O2 and an active visible-light-driven photocatalyst (Ag-S/PEG/TiO2) was utilized under natural solar radiation for the degradation of 2-nitrophenol (2-NP), and interaction effects between the photocatalyst and hydrogen peroxide were analyzed. For this purpose, experiments were designed using the response surface methodology based on the central composite design. The resulting data was utilized to obtain a model for the prediction of response (the degradation efficiency) as a function of two independent factors (H2O2 concentration and the photocatalyst loading). The statistical analysis indicated that optimum values of each of the two independent factors... 

    Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review

    , Article Research on Chemical Intermediates ; Volume 45, Issue 4 , 2019 , Pages 2197-2254 ; 09226168 (ISSN) Samadi, M ; Zirak, M ; Naseri, A ; Kheirabadi, M ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Abstract: Photocatalysis using semiconductors has emerged as a promising wastewater treatment process to overcome the major challenges faced by conventional technologies. The advantages of ZnO nanomaterials over other semiconductors, and their structure-dependent properties, make them important building blocks in nanotechnology as multifunctional materials. Moreover, it has been confirmed that ZnO nanomaterials can exhibit high performance in photodegradation of organic dyes for treatment of industrial effluent. The wurtzite structure of ZnO contains polar and nonpolar planes; the low surface energy and thermodynamic stability of the nonpolar planes enable formation of one-dimensional (1D)... 

    Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine

    , Article Journal of Environmental Management ; Volume 233 , 2019 , Pages 660-672 ; 03014797 (ISSN) Mahmoodi, N. M ; Abdi, J ; Taghizadeh, M ; Taghizadeh, A ; Hayati, B ; Shekarchi, A. A ; Vossoughi, M ; Sharif University of Technology
    Academic Press  2019
    Abstract
    Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV–Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%).... 

    Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities

    , Article Journal of Colloid and Interface Science ; Volume 537 , 2019 , Pages 66-78 ; 00219797 (ISSN) Kheirabadi, M ; Samadi, M ; Asadian, E ; Zhou, Y ; Dong, C ; Zhang, J ; Moshfegh Zaker, A. R ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM). In addition, diameter of silver nanoparticles grown on the ZnO nanorods with the average aspect ratio of 5 was determined in the range of 30–80 nm by using transmission electron microscopy... 

    Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal of organic pollutants from aqueous media

    , Article Advanced Powder Technology ; Volume 31, Issue 8 , 2020 , Pages 3328-3341 Azarniya, A ; Zekavat, M ; Soltaninejad, M ; Bakhshandeh, F ; Reza Madaah Hosseini, H ; Kashani, S ; Amutha, C ; Khatiboleslam Sadrnezhaad, S ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Recently, aluminum titanate (Al2TiO5)-based nanostructures have been proved to serve as an efficient photocatalytic material with satisfactory photodegradation capacity. In this study, the citrate sol–gel method was used to synthesize these nanostructures and inspect the significant impacts of nitrogen-doping-originated crystalline defects on their photocatalytic performance in some details for the first time. The results indicated that the penetration of nitrogen atoms into AT crystal lattice, depending on the nitriding time and temperature, can induce a great deal of the residual stress and result in propagating the existing cracks and breaking down the particles. The XPS and FTIR results... 

    Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst

    , Article Chemical Engineering Research and Design ; Volume 153 , 2020 , Pages 709-720 Heidarpour, H ; Padervand, M ; Soltanieh, M ; Vossoughi, M ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    In this study, organic contaminant degradation was intensified by increasing the oxidative capacity of the reaction system through simultaneous photocatalysis and heterogeneous persulfate activation. Fe nanoparticles were served as a multifunctional modifier to enhance the photoactivity of graphitic carbon nitride (CN), by tuning optical properties as well as persulfate (PS) activation rate, by introducing a new activation pathway. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-visible... 

    Hybrid adsorption–photocatalysis properties of quaternary magneto-plasmonic ZnO/MWCNTs nanocomposite for applying synergistic photocatalytic removal and membrane filtration in industrial wastewater treatment

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 391 , 2020 Irani, E ; Amoli Diva, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A new multifunctional filtration membrane was prepared by twofold advantages of conventional polymeric-membrane as the supporting layer and magneto-plasmonic Ag-doped ZnO@Fe3O4/MWCNTs nanocomposite as the functional layer. Poly acrylic acid (PAA)-modified polyamide (PA) discs (PAA-PA) were applied to increase the hydrophilicity of prepared membrane and X-Ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used for characterization. The grafting yield of PAA in the pores and on the surface of PA was 17 wt.% and weigh difference between PAA-PA membrane before and after modifying with the photocatalyst was 8.7 mg. The amount of photocatalyst loading in the prepared... 

    Magnetically recoverable TiO2/SiO2/γ-Fe2O3/rGO composite with significantly enhanced UV-visible light photocatalytic activity

    , Article Molecules ; Volume 25, Issue 13 , 2020 Kaveh, R ; Mokhtarifar, M ; Bagherzadeh, M ; Lucotti, A ; Diamanti, M. V ; Pedeferri, M ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    In this paper, we report the preparation of a new composite (TiO2/SiO2/γ-Fe2O3/rGO) with a high photocatalytic efficiency. The properties of the composite were examined by different analyses, including X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), photoluminescence (PL), UV-Visible light diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, vibrating-sample magnetometer (VSM), and nitrogen gas physisorption (BET) studies. The photocatalytic efficiency of the proposed composite was evaluated by the degradation of methylene blue under UV and visible light, and the results were compared with titanium dioxide (TiO2), where... 

    Biosynthesis of copper oxide nanoparticles with potential biomedical applications

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3983-3999 Rabiee, N ; Bagherzadeh, M ; Kiani, M ; Ghadiri, A. M ; Etessamifar, F ; Jaberizadeh, A. H ; Shakeri, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Introduction: In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties. Materials and Methods: In this study, we aim to synthesis the copper oxide nanoparticles using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of temperature, solvent, and time of the reaction. Furthermore, the... 

    Facile template-free synthesis of new α-MnO2 nanorod/silver iodide p-n junction nanocomposites with high photocatalytic performance

    , Article New Journal of Chemistry ; Volume 44, Issue 18 , 2020 , Pages 7401-7411 Salari, H ; Kohantorabi, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    In the present study, a novel α-MnO2/AgI photocatalyst was successfully fabricated by using hydrothermal/precipitation methods, and its photocatalytic performance was evaluated from the degradation of Acid blue 92 (AB92) dye under visible light irradiation. The surface and crystalline structure, morphology, and electro-chemical properties of the as-made photocatalyst were investigated by BET, XRD, XPS, SEM-EDS, TEM, DRS, PL, PC, and Raman analysis. The optimized nanocomposite (α-MnO2/AgI) with a weight ratio of 1:15 showed the best photocatalytic activity in the decomposition of AB92 with a removal efficiency of 100% in 40 min which was better than that of pure α-MnO2 (48%) and AgI (61%),... 

    Photocatalytic decolorization of red dye in aqueous ZnO-TiO2 suspensions

    , Article International Conference on Smart Materials-Smart! Intelligent Materials and Nano Technology, (SmartMat-'08) and also the 2nd International Workshop on Functional Materials and Nanomaterials (IWOFM-2) ; Volume 55-57 , 2008 , Pages 577-580 ; 10226680 (ISSN); 9780878493562 (ISBN) Khameneh Asl, S ; Sadrnezhaad, K ; Kianpoor Rad, M ; Sharif University of Technology
    2008
    Abstract
    The photocatalytic decolorization of aqueous solutions of Direct Red 27 in the presence of various amounts of semiconductor powder suspensions has been investigated in a batch reactor with the use of artificial light sources. ZnO and TiO2 have been found the most active photocatalysts; the effect of catalyst loading and type on the reaction rate was optimized for maximum degradation. The results imply that 1:1 ratio is proper for the photocatalytic removal of Direct Red 27. In addition, the effects of particle size and surface area were examined in this photocatalytic process. The results showed that the decolorization efficiency increases with increase in surface area, and decrease in... 

    Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water

    , Article Nanotechnology ; Volume 19, Issue 19 , 2008 ; 09574484 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Ahadian, M. M ; Mahdavi Ardakani, S. A ; Sharif University of Technology
    2008
    Abstract
    In this paper, we discuss the synthesis and characterization of tungsten trioxide nanoparticles prepared by the arc discharge method in deionized (DI) water. The size and morphology of WO3 nanoparticles prepared using different arc currents (25, 35 and 45 A) were studied. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results indicate that at an arc current of 25 A, the size of the particles is about 30 nm, and this increases to 64 nm by increasing the arc current. This size increase caused a decrease of optical band gap from 2.9 to 2.6 eV. X-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) spectra demonstrate the formation of the WO3 phase.... 

    Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method

    , Article Journal of Physical Chemistry C ; Volume 112, Issue 47 , 2008 , Pages 18686-18689 ; 19327447 (ISSN) Hosseini, Z ; Taghavinia, N ; Sharifi, N ; Chavoshi, M ; Rahman, M ; Sharif University of Technology
    2008
    Abstract
    TiO2 deposited on a membrane of Ag fibers was prepared as a photoelectrochemical cell electrode. Ag fibers were made by reduction of Ag complexes on cellulose fibers, followed by burning out the template. TiO 2 photocatalyst layers were grown on the fibers by electrophoretic deposition of TiO2 nanoparticles. Ag fibers could be uniformly deposited. Photocatalytic tests by dye decomposition and electrochemical impedance spectroscopy (EIS) under UV illumination demonstrate that Ag fibers act as a good substrate that provides both high surface area and good separation of photogenerated electron-hole pairs and causes the enhancement of photocatalytic activity in comparison with a thin film of... 

    Highly efficient of molybdenum trioxide-cadmium titanate nanocomposites for ultraviolet light photocatalytic and antimicrobial application: Influence of reactive oxygen species

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 191 , 2019 , Pages 75-82 ; 10111344 (ISSN) Zhu, J. M ; Hosseini, M ; Fakhri, A ; Salari Rad, S ; Hadadi, T ; Nobakht, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present work we report the enhanced UV light photocatalytic performance of cadmium titanate photocatalyst by MoO 3 for Drug pollutant degradation. The nano photocatalyst sample was synthesized employing the Pechini-ultrasonic-hydrothermal route. Therefore, the nano photocatalyst were characterized by various analytical devices. The wide scan X-ray photoelectron spectral study confirmed the MoO 3 in the CdTiO 3 matrix. The crystallite size calculated with the Debye-Scherrer equation (55.4, 57.0, 61.2 and 63.1 nm for pure CdTiO 3 , MoCdTi-0, MoCdTi-1, and MoCdTi-2 nanocomposites, respectively). SEM micrographs revealed nanowire morphology indicated the crystalline nature of the sample.... 

    Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria

    , Article Journal of the American Chemical Society ; Volume 129, Issue 31 , 2007 , Pages 9552-9553 ; 00027863 (ISSN) Elahifard, M. R ; Rahimnejad, S ; Haghighi, S ; Gholami, M. R ; Sharif University of Technology
    2007
    Abstract
    Apatite-coated Ag/AgBr/TiO2 was prepared by deposition of Ag as novel metal to generate electron-hole pairs by extending the excitation wavelength to the visible-light region, AgBr, and hydroxy apatite as photosensitive material and adsorption bioceramic, respectively. The energy dispersive X-ray spectrometry clearly showed the presence of Ti, Ag, Ca, and P elements on the surface of catalyst. The bactericidal experiments in dark media indicated that only the novel catalyst shows inhibiting growth of bacteria in this case. A transmission electron microscopy image illustrated that catalyst nanoparticles adhere to the outer membrane of the cell and act as an inhibitor to the nourishment of... 

    Synthesis of titania nanofibers for photocatalytic applications

    , Article Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry ; Volume 37, Issue 6 , 2007 , Pages 457-460 ; 15533174 (ISSN) Aminian, M. Kh ; Taghavinia, N ; Iraji Zad, A ; Mahdavi, M ; Chavoshi, M ; Sharif University of Technology
    2007
    Abstract
    Titania nanofibers were prepared using a colloidal solution of Titania nanoparticles and a templating method. The preparation comprises impregnation of cellulose fibers in the solution containing Titania nanoparticles followed by thermal removal of the cellulose template. It is evidenced by scanning electron microscopy (SEM) that the residue substance consists of micron size fibers with a microstructure of nanofibers. The pore size distribution of the substance is multi-scale and fractal morphology was demonstrated with two fractal regimes with dimensions of 1.78 and 2.97 for sizes below and above 7.5nm, respectively. The surface area of the Titania fibers was measured about 250m2/g. The... 

    Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol

    , Article Applied Catalysis B: Environmental ; Volume 74, Issue 1-2 , 2007 , Pages 53-62 ; 09263373 (ISSN) Hosseini, N ; Borghei, M ; Vossoughi, M ; Taghavinia, N ; Sharif University of Technology
    2007
    Abstract
    The photocatalytic degradiation of phenol by nanoTiO2 particles coated on perlite as a new composite nano-catalyst was investigated. Titanium dioxide (Degussa P-25) was immobilized on three different supports (perlite granules, glass plates and steel fiber) by a very simple and inexpensive method. Perlite granules have a porosity of more than 95%, which allows them to stay afloat on water surface. This gives the medium a unique characteristic from the processing point of view, which enables it to get wetted with the polluted solution without requiring any pumping and simultaneously be exposed to the radiation source when coated with the photocatalyst. The photocatalytic activity of prepared... 

    Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-fenton-like degradation of organic contaminants

    , Article Journal of Colloid and Interface Science ; Volume 602 , 2021 , Pages 73-94 ; 00219797 (ISSN) Bagherzadeh, B ; Kazemeini, M ; Mahmoodi, N. M ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Herein, MIL-101(Fe), CoFe2O4, novel binary (MIL-101(Fe)/CoFe2O4, MIL-101(Fe)/GO and CoFe2O4/GO), and ternary (MIL-101(Fe)/CoFe2O4/(3%)GO and MIL-101(Fe)/CoFe2O4/(7%)GO) magnetic composites based upon the MIL-101(Fe) were synthesized. The XRD, FESEM, TEM, EDX, BET-BJH, FTIR, VSM, DRS, PL, EIS and other electrochemical analyses were applied to characterize samples. The MIL/CoFe2O4/(3%)GO demonstrated the best performance compared to other samples for visible light photocatalytic and photo-Fenton-like degradation of Direct Red 23 (DtR-23), Reactive Red 198 (ReR-198) dyes as well as Tetracycline Hydrochloride (TC-H) antibiotic. Degradation of dyes using the ternary composite after 70 min of... 

    Improved green biosynthesis of chitosan decorated Ag- and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 32 , 2021 ; 15499634 (ISSN) Kiani, M ; Rabiee, N ; Bagherzadeh, M ; Ghadiri, A.M ; Fatahi, Y ; Dinarvand, R ; Webster, T. J ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and...