Loading...
Search for: physiology
0.012 seconds
Total 246 records

    EEG-based functional brain networks: does the network size matter?

    , Article PloS one ; Volume 7, Issue 4 , 2012 ; 19326203 (ISSN) Joudaki, A ; Salehi, N ; Jalili, M ; Knyazeva, M. G ; Sharif University of Technology
    PLOS  2012
    Abstract
    Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of... 

    A unimodal person authentication system based on signing sound

    , Article Proceedings - IEEE-EMBS International Conference on Biomedical and Health Informatics: Global Grand Challenge of Health Informatics, BHI 2012 ; 2012 , Pages 152-154 ; 9781457721779 (ISBN) Khazaei, D ; Maghooli, K ; Afdideh, F ; Azimi, H ; Sharif University of Technology
    IEEE  2012
    Abstract
    Person authentication based on only the name, password or person identification number is not secured enough. In recent years researchers have focused on human physiological and behavioral parameters, because these parameters are more unique and human-specific than traditional ones. This approach of person authentication is usually called biometric authentication. Signature is the most commonly used behavioral biometric which is investigated in two ways of online and offline by researchers. In online procedure, the temporal indices of signature such as signing velocity, and acceleration are involved to increase the accuracy relative to offline methods and to recognize counterfeit signatures.... 

    Development of a wearable measuring system for respiratory plethysmography

    , Article Proceedings of the 8th IASTED International Conference on Biomedical Engineering, Biomed 2011, 16 February 2011 through 18 February 2011 ; February , 2011 , Pages 295-299 ; 9780889868663 (ISBN) Mokhlespour, M. I ; Ramezanzadeh, M ; Narimani, R
    2011
    Abstract
    Assessment of respiratory volume is widely used in clinical application in order to assess the case of respiratory illness, and the progression of the respiratory syndrome. Respiratory plethysmography is used to determine the changes of chest volume to monitor the breathing. A wearable respiration measuring system has been introduced for detection of volume variations of chest. The system consists of a flexible sensor, stretchable cloth and electrical board. The flexible sensor, whose electrical voltage is produced by body movements, is installed inside the shirt and closely contacts the chest. The low frequency components of body movements recorded by the sensor are mainly generated by... 

    Failure tolerance of motif structure in biological networks

    , Article PLoS ONE ; Volume 6, Issue 5 , May , 2011 ; 19326203 (ISSN) Mirzasoleiman, B ; Jalili, M ; Sharif University of Technology
    2011
    Abstract
    Complex networks serve as generic models for many biological systems that have been shown to share a number of common structural properties such as power-law degree distribution and small-worldness. Real-world networks are composed of building blocks called motifs that are indeed specific subgraphs of (usually) small number of nodes. Network motifs are important in the functionality of complex networks, and the role of some motifs such as feed-forward loop in many biological networks has been heavily studied. On the other hand, many biological networks have shown some degrees of robustness in terms of their efficiency and connectedness against failures in their components. In this paper we... 

    Prosthetic knee using of hybrid concept of magnetorheological brake with a T-shaped drum

    , Article 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2 August 2015 through 5 August 2015 ; Aug , 2015 , Pages 721-726 ; 9781479970964 (ISBN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via implementing of Newton's equation of... 

    Dynamic simulation of the biped normal and amputee human gait

    , Article Mobile Robotics: Solutions and Challenges - Proceedings of the 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2009, 9 September 2009 through 11 September 2009, Istanbul ; 2010 , Pages 1113-1120 ; 9814291269 (ISBN) ; 9789814291262 (ISBN) Shandiz, M. A ; Farahmand, F ; Zohour, H ; Sharif University of Technology
    2010
    Abstract
    A two-dimensional seven link biped dynamic model was developed to investigate the mechanical characteristics of the normal and amputee locomotion during the complete gait cycle. The foot-ground contact was simulated using a five-point penetration contact model. The equations of motion were derived using Lagrange method. Optimization of the normal human walking model provided constant coefficients for the driving torque equations that could reasonably reproduce the normal kinematical pattern. The resulting torques were then applied to the intact joints of the amputee model with a prosthetic leg equipped with a kinematical driver controller for the ankle and either a hydraulic, elastic or... 

    Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: A computational approach

    , Article Neural Computation ; Volume 22, Issue 9 , 2010 , Pages 2334-2368 ; 08997667 (ISSN) Piray, P ; Keramati, M. M ; Dezfouli, A ; Lucas, C ; Mokri, A ; Sharif University of Technology
    2010
    Abstract
    Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive-but not aversive-stimuli in the critic-but not the actor-we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We... 

    An ellipsoidal model for studying response of head impacts

    , Article Acta of Bioengineering and Biomechanics ; Volume 12, Issue 1 , 2010 , Pages 47-53 ; 1509409X (ISSN) Heydari, M ; Jani, S ; Sharif University of Technology
    2010
    Abstract
    The objective of this study was to propose a new analytical model for studying response of head impacts. Head is modeled by fluidfilled ellipsoidal shell of inconstant thickness impacted by a solid elastic sphere. Modeling the head as an ellipsoid is more realistic than modeling it as a sphere, the previous model existing in the literature [3]-[8]. In this model, the effect of Hertzian contact stiffness and local shell stiffness are combined to derive explicit equations for impact duration, the peak force transmitted to head, and the head injury criterion. One of the advantages of the model presented is sensitivity to the site of impact. A comparison between the present analytical results... 

    Robust control of LVAD based on the sub-regional modeling of the heart

    , Article Scientia Iranica ; Volume 23, Issue 6 , 2016 , Pages 2934-2943 ; 10263098 (ISSN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Left Ventricular Assist Devices (LVAD) have received renewed interest as a bridge-to-transplantation as well as a bridge-to-recovery device. Ironically, reports of malfunction and complications have hindered the growth of this device. In particular, the main concern is LVAD's susceptibility to excessive backlash and suction as a result of ows that are either too low or high, respectively. This study utilizes a well-established physiological model of the cardiovascular system as a reliable platform to study a proposed adaptive robust controller for a rotary motor based LVAD which overcomes such shortcomings. Proposed controller performance is evaluated by comparing simulated natural heart... 

    Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 94, Issue 3 , 2016 ; 15393755 (ISSN) Yousefnezhad, M ; Fotouhi, M ; Vejdani, K ; Kamali Zare, P ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ=D/D∗) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D∗ = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes... 

    A unique sensitive and highly selective fluorescent naphthodiaza-crown macrocyclic ligand chemosensor for Hg2+ in water

    , Article Journal of Fluorescence ; Volume 27, Issue 4 , 2017 , Pages 1385-1398 ; 10530509 (ISSN) Ghanbari, B ; Zarepour jevinani, M ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    The noticeable enhancement in fluorescence emission of O2N2-donor naphthodiaza-crown macrocyclic ligand (L) in the presence of Hg2+ was observed in which the fluorescence quantum yield of free ligand L as well as L/Hg2+ complex were found to be as 0.29 and 0.49, respectively. The observed ultra-low limit of detection (LOD) for Hg2+ by L was determined as low as 1.0 × 10−11 M in water. A 1:1 stoichiometry was also established for L/Hg2+ together with a binding constant KBH = 66,543 by employing fluorescence spectrophotometry. The competition experiments on L/Hg2+ demonstrated highly selective detection of Hg2+ in the presence of the library cations. A two path mechanism for detection of metal... 

    Synchronizing hindmarsh-rose neurons over newman-watts networks

    , Article Chaos ; Volume 19, Issue 3 , 2009 ; 10541500 (ISSN) Jalili, M ; Sharif University of Technology
    American Institute of Physics Inc  2009
    Abstract
    In this paper, the synchronization behavior of the Hindmarsh-Rose neuron model over Newman-Watts networks is investigated. The uniform synchronizing coupling strength is determined through both numerically solving the network's differential equations and the master-stability-function method. As the average degree is increased, the gap between the global synchronizing coupling strength, i.e., the one obtained through the numerical analysis, and the strength necessary for the local stability of the synchronization manifold, i.e., the one obtained through the master-stability-function approach, increases. We also find that this gap is independent of network size, at least in a class of networks... 

    Constrained error rate analysis for wireless body area networks

    , Article IET Wireless Sensor Systems ; Volume 9, Issue 6 , 2019 , Pages 366-374 ; 20436386 (ISSN) Razavi, A ; Jahed, M ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    Wireless body area network (WBAN) is composed of miniaturised sensors that operate in the vicinity of the human body for recording the vital physiological signals and wirelessly transmitting them to a central hub for further processing. In this study, a statistical approach is applied to an experimental channel data set to extract the models for the squared channel gain that best describe the characteristics of the transmission medium between the sensors and the central hub. The derived models are then utilised to investigate the error rate performance of WBAN sensors. On the basis thereof, an optimisation problem is formed for which the cost function is the symbol error rate (SER) metric.... 

    Prediction of life-threatening heart arrhythmias using obstructive sleep apnoea characteristics

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 1761-1764 ; 9781728115085 (ISBN) Mohammad Alinejad, G ; Rasoulinezhad, S ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    False alarms ratios of up to 86% in Intensive Care Units (ICU) decrease quality of care, impacting both clinical staff and patients through slowing off response time and noise tribulation. We present a novel algorithm to predict heart arrhythmias in ICUs. We focus on five life-threatening arrhythmias: Asystole, Extreme Bradycardia, Extreme Tachycardia, Ventricular Tachycardia, and Ventricular Fibrillation. The algorithm is based on novel features using only 12 seconds of one ECG channel to predict the arrhythmias. Our new feature sets include different SQI and physiological features and the features used in obstructive sleep apnoea detection. We also proposed a new morphological... 

    Effects of human stature and muscle strength on the standing strategies: A computational biomechanical study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 7 , 2020 , Pages 674-685 Ashtiani, M. N ; Azghani, M. R ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    It has been hypothesized that the muscular efforts exerted during standing may be altered by changes in personal factors, such as the body stature and muscular strength. The goal of this work was to assess the contribution of leg muscles using a biomechanical model in different physical conditions and various initial postures. An optimized inverse dynamics model was employed to find the maximum muscular effort in 23,040 postures. The simulation results showed that mid-range knee flexion could help the healthy and strong individuals maintain balance, but those with weaker muscle strength required more knee flexion. Individuals of weak muscular constitution as well as those with tall stature... 

    Evaluation of endothelial response to reactive hyperaemia in peripheral arteries using a physiological model

    , Article International Journal of Biomedical Engineering and Technology ; Volume 33, Issue 4 , 2020 , Pages 305-324 Parsafar, M. H ; Zahedi, E ; Vahdat, B. V ; Sharif University of Technology
    Inderscience Publishers  2020
    Abstract
    Non-invasive measurement of flow-mediated dilation (FMD) in the brachial artery for assessing endothelial function is costly and operator-dependent, limiting its application to research cases. In this paper, an approach based on a physiological model between normalized central blood pressure and finger photoplethysmogram is presented. Baseline model parameters are estimated using a genetic algorithm in 30 subjects consisting of ten normal blood pressure (BP), ten high-BP and ten elderly volunteers. Beat-to-beat fitness values after reactive hyperaemia are calculated using baseline (before cuff occlusion) data. Results show that stimulus-induced changes are fairly described with a first order... 

    Combined effects of electric stimulation and microgrooves in cardiac tissue-on-a-chip for drug screening

    , Article Small Methods ; Volume 4, Issue 10 , 2020 Ren, L ; Zhou, X ; Nasiri, R ; Fang, J ; Jiang, X ; Wang, C ; Qu, M ; Ling, H ; Chen, Y ; Xue, Y ; Hartel, M.C ; Tebon, P ; Zhang, S ; Kim, H.-J ; Yuan, X ; Shamloo, A ; Dokmeci, M. R ; Li, S ; Khademhosseini, A ; Ahadian, S ; Sun, W ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Animal models and traditional cell cultures are essential tools for drug development. However, these platforms can show striking discrepancies in efficacy and side effects when compared to human trials. These differences can lengthen the drug development process and even lead to drug withdrawal from the market. The establishment of preclinical drug screening platforms that have higher relevancy to physiological conditions is desirable to facilitate drug development. Here, a heart-on-a-chip platform, incorporating microgrooves and electrical pulse stimulations to recapitulate the well-aligned structure and synchronous beating of cardiomyocytes (CMs) for drug screening, is reported. Each chip... 

    Sex-Dependent estimation of spinal loads during static manual material handling activities—combined in vivo and in silico analyses

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 9 , 2021 ; 22964185 (ISSN) Firouzabadi, A ; Arjmand, N ; Pan, F ; Zander, T ; Schmidt, H ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    Manual material handling (MMH) is considered as one of the main contributors to low back pain. While males traditionally perform MMH tasks, recently the number of females who undertake these physically-demanding activities is also increasing. To evaluate the risk of mechanical injuries, the majority of previous studies have estimated spinal forces using different modeling approaches that mostly focus on male individuals. Notable sex-dependent differences have, however, been reported in torso muscle strength and anatomy, segmental mass distribution, as well as lifting strategy during MMH. Therefore, this study aimed to use sex-specific models to estimate lumbar spinal and muscle forces during... 

    3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell

    , Article Journal of Nanoparticle Research ; Volume 23, Issue 4 , 2021 ; 13880764 (ISSN) Mohammadi, S.Z ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In this study, a general 3D distributed modeling of Trolling-Mode AFM (TR-AFM) as a nanorobot is presented to analyze the 2D manipulation process of a spherical cell. To this aim, the analysis is categorized into 3 sections. In the first section, 6 deformations of TR-AFM are taken into account, and the standard model of the system is obtained. Moreover, the system is simulated in ANSYS Workbench. The results of modal and transient analyses of the system from both analytical and software methods reveal high agreement, which confirms the accuracy of the presented analytical model. In the second section, by utilizing the 3D derived model, displacement of a spherical yeast single cell (W303)... 

    First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Morad, R ; Akbari, M ; Rezaee, P ; Koochaki, A ; Maaza, M ; Jamshidi, Z ; Sharif University of Technology
    Nature Research  2021
    Abstract
    From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt...