Loading...
Search for: planarity
0.007 seconds
Total 101 records

    Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    , Article Advanced Materials ; Volume 25, Issue 12 , January , 2013 , Pages 1769-1773 ; 09359648 (ISSN) Lan, X ; Bai, J ; Masala, S ; Thon, S. M ; Ren, Y ; Kramer, I. J ; Hoogland, S ; Simchi, A ; Koleilat, G. I ; Paz-Soldan, D ; Ning, Z ; Labelle, A. J ; Kim, J. Y ; Jabbour, G ; Sargent, E. H ; Sharif University of Technology
    2013
    Abstract
    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained  

    Nonlinear circuit model for discontinuity of step in width in superconducting microstrip structures and its impact on nonlinear effects

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 2 , 2013 ; 10518223 (ISSN) Javadzadeh, S. M. H ; Farzaneh, F ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    Superconducting materials are known to exhibit nonlinear effects and to produce harmonic generation and intermodulation distortion in superconductive circuits. In planar structures, these nonlinearities depend on the current distribution on the strip which is mainly determined by the structure of the device. This paper investigates the current distribution at the step-in-width discontinuity in superconducting microstrip transmission lines, which is computed by a numerical approach based on a 3-D finite-element method. This current distribution is used to obtain the parameters of the nonlinear circuit model for the superconducting microstrip step-in-width discontinuity. The proposed... 

    Electroelastic analysis of FG piezoelectric structures under thermo-electro-mechanical loadings

    , Article Mechanics of Advanced Materials and Structures ; Volume 20, Issue 1 , 2013 , Pages 11-27 ; 15376494 (ISSN) Kargarnovin, M. H ; Hashemi, R ; Emami, A. A ; Sharif University of Technology
    2013
    Abstract
    An exact planar solution for the determination of electroelastic responses are presented for functionally graded piezoelectricmaterials (FGPMs). The electro-mechanical properties are assumed to vary exponentially. Exploiting the potential functions for stress and induction, the governing equations reduce to systems of fourth order inhomogeneous partial differential equations (PDEs), which are solved in a closed form manner. Validity of the obtained solution is checked by other existing results in the literatures. Several examples are provided under distinctive thermo-electro-mechanical loadings. Finally, the effect of the graded indices is examined upon the electroelastic response of the FGP... 

    The minimum vulnerability problem

    , Article Algorithmica ; Volume 7676 LNCS , 2012 , Pages 382-391 ; 14320541(ISSN) ; 9783642352607 (ISBN) Assadi, S ; Emamjomeh Zadeh, E ; Norouzi Fard, A ; Yazdanbod, S ; Zarrabi Zadeh, H ; Sharif University of Technology
    2012
    Abstract
    We revisit the problem of finding k paths with a minimum number of shared edges between two vertices of a graph. An edge is called shared if it is used in more than one of the k paths. We provide a ⌊k/2⌋-approximation algorithm for this problem, improving the best previous approximation factor of k - 1. We also provide the first approximation algorithm for the problem with a sublinear approximation factor of O(n3/4), where n is the number of vertices in the input graph. For sparse graphs, such as bounded-degree and planar graphs, we show that the approximation factor of our algorithm can be improved to O(√n). While the problem is NP-hard, and even hard to approximate to within an O(log n)... 

    Analysing of 3D beamforming in MIMO radars

    , Article Proceedings of the 2012 World Congress on Information and Communication Technologies, WICT 2012 ; 2012 , Pages 745-749 ; 9781467348041 (ISBN) Roshanzamir, A ; Bastani, M. H ; Roshanzamir, M ; Machine Intelligence Research Labs (MIR Labs) ; Sharif University of Technology
    2012
    Abstract
    A multiple input multiple output (MIMO) radar system is an emerging research field which has attracted many studies in recent years. This type of radar, unlike conventional phased array radar, can transmit different probing signals via its antennas, that may be correlated or uncorrelated with each other. This waveform diversity offered by MIMO radar systems enable superior capabilities compared to conventional phased array radar. Many papers have introduced different ways for beamforming of MIMO radar. In this paper it is desirable to analysis some methods for beamforming of MIMO radars with planar arrays constellation and examine their 3D result beam-pattern of such constellations for... 

    SAR computation of a human head exposed to different mobile headsets using FDTD method

    , Article Progress in Electromagnetics Research Symposium, 27 March 2012 through 30 March 2012 ; 2012 , Pages 1131-1134 ; 15599450 (ISSN) ; 9781934142202 (ISBN) Aminzadeh, R ; Ashiri, M ; Abdolali, A ; Sharif University of Technology
    2012
    Abstract
    Many standards are not considering Specific Absorption Rate (SAR) measurements with the use of mobile headsets.In this paper a simulation of mobile headset effects on a human head is done using FDTD-based platform, SEMCAD-X software.We designed two headset models with different case materials to observe their interaction with a Specific Anthropomorphic Mannequin (SAM) phantom as a human head model.Both headset models are installed in the left ear and the human head is rotated by 30±.As headset communicates via Bluetooth at the frequency of 2.4 GHz, we chose a suitable planar inverted F antenna (PIFA) to use with both the headset models.Spatial peak SAR values averaged over 1 g and 10 g for... 

    Single-Source Capacitated Multi-Facility Weber Problem - An iterative two phase heuristic algorithm

    , Article Computers and Operations Research ; Volume 39, Issue 7 , 2012 , Pages 1465-1476 ; 03050548 (ISSN) Manzour Al Ajdad, S. M. H ; Torabi, S. A ; Eshghi, K ; Sharif University of Technology
    2012
    Abstract
    Multi-Facility Weber Problem (MFWP), also known as continuous locationallocation problem, entails determining the locations of a predefined number of facilities in a planar space and their related customer allocations. In this paper, we focus on a new variant of the problem known as Single-Source Capacitated MFWP (SSCMFWP). To tackle the problem efficiently and effectively, an iterative two-phase heuristic algorithm is put forward. At the phase I, we aim to determine proper locations for facilities, and during the phase II, assignment of customers to these facilities is pursued. As an alternative solution method, a simulated annealing (SA) algorithm is also proposed for carrying out the... 

    Simulation of flow of short fiber suspensions through a planar contraction

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 579-584 ; 10263098 (ISSN) Khodadadi Yazdi, M ; Ramazani S. A. A ; Kamyabi, A ; Hosseini Amoli, H ; Sharif University of Technology
    2012
    Abstract
    In this study, the flow of a fiber filled viscoelastic matrix through planar contractions is investigated. It was found that by adding fiber to the matrix vortex, the intensity increases. Fiber orientation along "x" and "y" axes was studied too. It was found that fiber orientation could be used for determining the flow regime through the contraction geometry. The rigidity condition of fibers, which needs the trace of the orientation tensor to be unity everywhere in the domain, is correct except near walls and the reentrant corner, which is slightly less than one. In these regions, the stress magnitude is higher, which results in more numerical errors, and which further leads to some error in... 

    Exact formulations of non-linear planar and spatial Euler-Bernoulli beams with finite strains

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 226, Issue 5 , 2012 , Pages 1225-1236 ; 09544062 (ISSN) Abedinnasab, M. H ; Zohoor, H ; Yoon, Y. J ; Sharif University of Technology
    2012
    Abstract
    Using Hamilton's principle, exact equations of motion for non-linear planar and spatial Euler-Bernoulli beams are derived. In the existing non-linear Euler-Bernoulli beam formulations, some elastic terms are dropped by differentiation from the incomplete Green-Lagrange strain tensor followed by negligible elastic deformations of cross-sectional frame. On the other hand, in this article, the exact strain field concerning considerable elastic deformations of cross-sectional frame is used as a source in differentiations. As a result, the achieved closed-form equations are exact and more accurate than formerly reported equations in the literature. Moreover, the applicable dynamic model of... 

    Computation of lucky number of planar graphs is NP-hard

    , Article Information Processing Letters ; Volume 112, Issue 4 , February , 2012 , Pages 109-112 ; 00200190 (ISSN) Ahadi, A ; Dehghan, A ; Kazemi, M ; Mollaahmadi, E ; Sharif University of Technology
    2012
    Abstract
    A lucky labeling of a graph G is a function l:V(G)→N, such that for every two adjacent vertices v and u of G, σ w∼vl(w)≠ σ w∼ul(w) (x∼y means that x is joined to y). A lucky number of G, denoted by η(G), is the minimum number k such that G has a lucky labeling l:V(G)→{1,⋯,k}. We prove that for a given planar 3-colorable graph G determining whether η(G)=2 is NP-complete. Also for every k≥2, it is NP-complete to decide whether η(G)=k for a given graph G  

    Tunneling properties of nonplanar molecules in a gas medium

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 84, Issue 6 , 2011 ; 10502947 (ISSN) Bahrami, M ; Bassi, A ; Sharif University of Technology
    Abstract
    We propose a simple, general, and accurate formula for analyzing the tunneling between classical configurations of a nonplanar molecule in a gas medium, as a function of the thermodynamic parameters of the gas. We apply it to two interesting cases: (i) the shift to zero frequency of the inversion line of ammonia, upon an increase in the pressure of the gas; and (ii) the destruction of the coherent tunneling of D 2S 2 molecules in a He gas. In both cases, we compare our analysis with previous theoretical and experimental results  

    Nonlinear dynamic analysis of an inclined Timoshenko beam subjected to a moving mass/force with beam's weight included

    , Article Shock and Vibration ; Volume 18, Issue 6 , 2011 , Pages 875-891 ; 10709622 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various... 

    Graphs attached to rings revisited

    , Article Arabian Journal for Science and Engineering ; Volume 36, Issue 6 , 2011 , Pages 997-1011 ; 13198025 (ISSN) Maimani, H. R ; Pournaki, M. R ; Tehranian, A ; Yassemi, S ; Sharif University of Technology
    Abstract
    In this paper, we discuss some recent results on graphs attached to rings. In particular, we deal with comaximal graphs, unit graphs, and total graphs. We then define the notion of cototal graph and, using this graph, we characterize the rings which are additively generated by their zero divisors. Finally, we glance at graphs attached to other algebraic structures  

    Evaluation of beam steering in circular planar array of coupled microwave oscillators

    , Article International Journal of RF and Microwave Computer-Aided Engineering ; Volume 21, Issue 4 , 2011 , Pages 383-391 ; 10964290 (ISSN) Tooni, S ; Banai, A ; Farzaneh, F ; Sharif University of Technology
    2011
    Abstract
    A Green's function to describe the time behavior of the locking phases in a circular planar array of mutually coupled microwave oscillators is proposed. Using this Green's function the dynamic behavior of the array can be described for any arbitrary free running frequency of elements of the oscillator array. Beam steering is realized via detuning the edge oscillators of the array from a reference frequency and the beam direction is controlled by the amount of detuning for each oscillator at the edge. Some detuning functions such as sinusoidal, triangular and rectangular ones have been applied and, the resulting array patterns are compared with one another  

    Radial basis function network for exponential stabilisation of periodic orbits for planar bipedal walking

    , Article Electronics Letters ; Volume 47, Issue 12 , 2011 , Pages 692-694 ; 00135194 (ISSN) Sadati, N ; Hamed, K.A ; Gruver, W. A ; Dumont, G. A ; Sharif University of Technology
    2011
    Abstract
    Presented is a novel and analytical approach to design a hybrid controller based on hybrid zero dynamics for exponential stabilisation of a desired periodic orbit for a hybrid model of walking composed of single and double support phases. To achieve this goal, the effect of a double support phase on angular momentum transfer and stabilisation is investigated. Also, the class of control inputs corresponding to an orbit during double support is presented. A smooth feedback law based on a radial basis function network is then proposed for the double support phase such that (i) the desired orbit is exponentially stable and (ii) the control vector minimises the least square control cost  

    Constructing a block layout by face area

    , Article International Journal of Advanced Manufacturing Technology ; Volume 54, Issue 5-8 , 2011 , Pages 801-809 ; 02683768 (ISSN) Jokar, M. R. A ; Sangchooli, A. S ; Sharif University of Technology
    2011
    Abstract
    Solving the facility layout problems by graph theory consists of two stages. In the first stage, a planar graph that specifies desired adjacencies is obtained and in the second stage, a block layout is achieved from the planar graph. In this paper, we introduce face area as a new concept for constructing a block layout. Based on this idea, we present a new algorithm for constructing block layout from a maximal planar graph (MPG). This MPG must be generated from deltahedron heuristic. Constructed block layout by this algorithm satisfies all of adjacency and area requirements  

    Efficient Observer-Dependent Simplification in Polygonal Domains

    , Article Algorithmica (New York) ; April , 2011 , Pages 1-21 ; 01784617 (ISSN) Zarei, A ; Ghodsi, M ; Sharif University of Technology
    Abstract
    In this paper, we consider a special version of the well-known line-simplification problem for simplifying the boundary of a region illuminated by a point light source q, or its visibility polygon VP(q). In this simplification approach, we should take the position of q as an essential factor into account to determine the quality of the resulting simplification. For this purpose, we redefine the known distance- and area-distortion error criteria as the main simplification criteria to take into account the distance between the observer q and the boundary of VP(q). Based on this, we propose algorithms for simplifying VP(q). More precisely, we propose simplification algorithms of O(n2) and... 

    Dynamic analysis of an n-revolute planar serial manipulator and sensitivity analysis based on Sobol's method

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 569-574 ; 9781467372343 (ISBN) Mehrafrooz, B ; Mohammadi, M ; Masouleh, M. T ; Sharif University of Technology
    2015
    Abstract
    In this paper, dynamic modeling and dynamic sensitivity analysis of an n-revolute planar serial robot are investigated. First, a dynamic modeling algorithm is proposed which is based on the concept of the so-called Natural Orthogonal Complement. The main goal of this algorithm consists in deriving the corresponding dynamic equations of a planar serial manipulator systematically. As a comparison study, 3-DOF a planar serial manipulator is modeled and the results of the proposed algorithm is compared with other methods, i.e., Newton-Euler, Lagrange-Euler, Adams software and an Open Dynamics Engine, the so-called MatODE. Then, in order to develop a dynamic sensitivity analysis scheme, Sobol's... 

    Path planning of 3-RRR parallel robot by avoiding mechanical interferences via Artificial Potential Field

    , Article International Conference on Robotics and Mechatronics, ICROM 2015, 7 October 2015 through 9 October 2015 ; 2015 , Pages 240-245 ; 9781467372343 (ISBN) Kazemi, H ; Porshokouhi, P. N ; Masouleh, M. T ; Novin, R. S ; Sharif University of Technology
    2015
    Abstract
    This paper deals with the collision-free path planning of planar parallel robot by avoiding mechanical interferences and obstacle within the workspace. For this purpose, an Artificial Potential Field approach is developed. As the main contribution of this paper, In order to circumvent the local minima problem of the potential fields, a novel approach is proposed which is a combination of Potential Field approach, Fuzzy Logic and also a novel algorithm consisting of Following Obstacle as well as Virtual Obstacle methods, as a hybrid method. Moreover, the inverse kinematic problem of the 3-RRR parallel robot is analyzed and then the aforementioned hybrid method is applied to this mechanism in... 

    Flexible strain sensors based on electrostatically actuated graphene flakes

    , Article Journal of Micromechanics and Microengineering ; Volume 25, Issue 7 , 2015 ; 09601317 (ISSN) Fardindoost, S ; Alipour, A ; Mohammadi, S ; Gokyar, S ; Sarvari, R ; Iraji Zad, A ; Demir, H. V ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    In this paper we present flexible strain sensors made of graphene flakes fabricated, characterized, and analyzed for the electrical actuation and readout of their mechanical vibratory response in strain-sensing applications. For a typical suspended graphene membrane fabricated with an approximate length of 10 μm, a mechanical resonance frequency around 136 MHz with a quality factor (Q) of ∼60 in air under ambient conditions was observed. The applied strain can shift the resonance frequency substantially, which is found to be related to the alteration of physical dimension and the built-in strain in the graphene flake. Strain sensing was performed using both planar and nonplanar surfaces...