Loading...
Search for: plastic-straining
0.008 seconds
Total 32 records

    Nonlinear elasto-plastic analysis of a sandwich cylindrical shell with core plasticity included

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 2 , 2015 , Pages 205-215 ; 09544062 (ISSN) Kargarnovin, M. H ; Shokrollahi, H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this paper, static response of a sandwich cylindrical shell under elasto-plastic deformation is investigated. The faces are made of some isotropic materials and the core is made of an orthotropic material both with linear work hardening behavior. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. The core material is modeled as a special orthotropic solid in which its in-plane stresses are assumed to be negligible. The Prandtl-Reuss plastic flow theory and von Mises yield criterion are used in the analysis. The governing equations are derived using the principle of virtual displacements. Using Ritz method, the equations are solved for deformation... 

    The influence of fiber/matrix debonding on inelastic micro-mechanical behavior of cross-ply IMC composites

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 4 , 2010 , Pages 197-222 ; 9780791849187 (ISBN) Teimouri, H ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In this study the effect of stress field on delamination and fiber/ matrix debonding in laminated composite panels is investigated from the micro-mechanical point of view by means of 3-D Finite Element Models. Specifically, the behavior of two-layer cross-ply symmetric laminates made up of SCS-6/Ti-24Al-11Nb Intermetallic Matrix Composite (IMC) during cooling from the processing temperature is studied. The results show that large plastic strains occur at the fiber/ matrix interface at the fiber end on the laminate free edge which may eventually extend to the interface of the layers of the laminate inflicting delamination damage. This phenomenon is more serious at the corner areas of the... 

    Study on static strain aging of 6082 aluminium alloy

    , Article Materials Science and Technology ; Volume 26, Issue 2 , Jul , 2010 , Pages 169-175 ; 02670836 (ISSN) Dadbakhsh, S ; Karimi Taheri, A ; Sharif University of Technology
    2010
    Abstract
    In this study both the quench aging and static strain aging kinetics of a 6082 Al alloy were investigated at a temperature range of 130-200°C using the Vickers hardness and tensile test. The activation energy and dislocation density were determined at different stages of the aging phenomenon. The former was used to analyse the kinetics of aging and the latter to interpret the competition of strengthening and recovery mechanisms during aging. It is shown that different activation energies are achieved depending on the aging time and temperature relating to formation of appropriate precipitates at different stages of aging. Moreover, it is revealed that prestrain reduces the activation energy.... 

    Simulation of softening kinetics and microstructural events in aluminum alloy subjected to single and multi-pass rolling operations

    , Article Applied Mathematical Modelling ; Volume 40, Issue 17-18 , 2016 , Pages 7571-7582 ; 0307904X (ISSN) Shabaniverki, S ; Serajzadeh, S ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    In this study, a multi-scale model is proposed to assess softening kinetics and microstructural changes during isothermal annealing within an aluminum alloy. In the first stage, an elastic-plastic finite element analysis is performed for computing the distributions of effective plastic strain and stress while the stored energy after cold rolling is defined based on the predicted data and then utilized for generation of the initial conditions in the microstructural analysis. In the next stage, an algorithm based on cellular automata coupled with a first order rate equation is used to determine the progress of softening behavior at elevated temperatures while both recrystallization and... 

    A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects

    , Article Journal of Intelligent Material Systems and Structures ; Volume 27, Issue 5 , 2016 , Pages 608-624 ; 1045389X (ISSN) Ashrafi, M. J ; Arghavani, J ; Naghdabadi, R ; Auricchio, F ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    Porous shape memory alloys are a class of very interesting materials exhibiting features typical of porous metals and of shape memory alloys. In contrast to dense shape memory alloys, considerable plastic strain accumulates in porous shape memory alloys even during phase transformation. Moreover, due to the microstructure of porous materials, phase transformation and plasticity phenomena are significantly pressure-dependent. In this article, we propose a three-dimensional phenomenological constitutive model for the thermomechanical behavior of porous shape memory alloys able to predict shape memory effect, pseudo-elastic behavior and plastic behavior under proportional as well as... 

    Energy absorption in plastic expansion of circular metal tubes

    , Article Computational Plasticity X - Fundamentals and Applications, 2 September 2009 through 4 September 2009, Barcelona ; 2009 ; 9788496736696 (ISBN) Azizi, R ; Salehghaffari, S ; Sharif University of Technology
    Abstract
    This paper investigates a new method of dissipating energy in which a rigid tube is driven into the deformable tube under axial compression. Since there is a specific clearance between the rigid and deformable tubes, the deformable tube is expanded during axial compression, and the impact energy is absorbed by plastic expansion of deformable tube and frictional energy between deformable and rigid tubes. Quasi-static axial compression tests with different values of friction coefficient between rigid and deformable tubes are performed. Theoretical formulation with consideration of strain hardening effect is presented to predict the mean crushing load. Theoretical and experimental studies show... 

    Application of endurance time analysis in seismic evaluation of an unreinforced masonry monument

    , Article Journal of Earthquake Engineering ; Volume 21, Issue 2 , 2017 , Pages 181-202 ; 13632469 (ISSN) Chiniforush, A. A ; Estekanchi, H ; Dolatshahi, K. M ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    In this article, seismic behavior of the main dome of a well-known middle-eastern historical- monument, “Imam Reza Shrine” (Mashhad, Iran) which is located in a high seismic area in Iran is evaluated. This study focuses on the response history analysis using intensifying dynamic excitations in the framework of Endurance Time Method. Endurance Time Analysis gives acceptable results for a wide range of earthquake intensities and considerably reduces the computational demand in comparison to the conventional Time History Analysis and Incremental Dynamic Analysis. The aim of this study is to investigate the applicability and efficiency of Endurance Time Analysis for masonry monuments and to... 

    Mechanical properties and strain-induced martensite transformation in cold rolling of 304l stainless steel plate

    , Article Journal of Materials Engineering and Performance ; Volume 27, Issue 11 , 2018 , Pages 6155-6165 ; 10599495 (ISSN) Abedi, F ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In this work, cold rolling behavior of stainless steel 304L is investigated and the effects of different process parameters on the occurrence of strain-induced martensite and mechanical properties are studied. The rolling experiments are conducted under different rolling speeds and reductions in which a set of samples is deformed at room temperature and the other set is first cooled to the temperature of − 10 °C and then rolled. Afterward, the developed microstructures and mechanical properties of the rolled steel are evaluated employing different testing techniques. In order to justify the results, mathematical modeling of cold rolling operation is also performed using Abaqus/Explicit to... 

    Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 2121-2135 ; 01770667 (ISSN) Amelirad, O ; Assempour, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In the present study, damage initiation and growth in a polycrystalline aggregate are investigated. In this regard, an anisotropic continuum damage mechanics coupled with rate-dependent crystal plasticity theory is employed. Using a thermodynamically consistent procedure, a finite deformation formulation is derived. For this purpose, the damage tensor is incorporated in the crystal plasticity formulation for a cubic single crystal. The damage evolution is considered to be dependent on the history of damage, equivalent plastic strain, stress triaxiality, and Lode parameters. This material model is implemented in the commercial finite-element code Abaqus/Standard by developing a user material... 

    Effects of hydrogen and oxides on tensile properties of Al-Si-Mg cast alloys

    , Article Materials Science and Engineering A ; Volume 552 , 2012 , Pages 36-47 ; 09215093 (ISSN) Eisaabadi B., G ; Davami, P ; Kim, S. K ; Varahram, N ; Sharif University of Technology
    Abstract
    Gas porosities and entrapped double oxide film (hereafter: oxides) are known to be the most detrimental defects in cast Al-Si-Mg alloys. This study investigated the effects of dissolved hydrogen (hereafter: H) and oxides on reproducibility of tensile properties in Al-7Si-0.35 Mg alloys. Also the effects of H and oxides content on the morphology of defects were studied. Four different casting conditions (low oxide-low H, low oxide-high H, high oxide-low H, high oxide-high H) were tested using tensile test bars that were cast in a metallic mold. Results of tensile test that were obtained for each casting condition were analyzed using Weibull two-parameter analysis. Microstructure and fracture... 

    Experimental and analytical studies on the prediction of forming limit diagrams

    , Article Computational Materials Science ; Volume 44, Issue 4 , 2009 , Pages 1252-1257 ; 09270256 (ISSN) Ahmadi, S ; Eivani, A. R ; Akbarzadeh, A ; Sharif University of Technology
    2009
    Abstract
    Metal forming processes are widely used in industrial productions, automobile bodies, food industries, oil refineries, and liquid and gas transmission systems. Analyzing these processes is very important to reduce wastes and optimize the processes. Study of some main factors such as physical and mechanical properties of material and its formability, die geometry, die material, lubrication and pressing speed has been the topic of many research projects. In this paper, forming limit diagrams (FLDs) for LC and ULC steels and the effect of different parameters like the work-hardening exponent, n, and the plastic strain ratio, r, on these diagrams have been evaluated and simulated using... 

    The strain gradient approach for determination of forming limit stress and strain diagrams

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 222, Issue 4 , 2008 , Pages 467-483 ; 09544054 (ISSN) Safikhani, A. R ; Hashemi, R ; Assempour, A ; Sharif University of Technology
    2008
    Abstract
    The forming limit stress diagram (FLSD) has been reported as being much less path dependent and much more favourable than the forming limit diagram (FLD) in representing forming limits in the numerical simulation of sheet metal forming processes. Therefore, the purpose of this study was to develop a methodology for the prediction of the forming limits both in strain and stress forms. All simulations are based on strain gradient theory of plasticity in conjunction with the Marciniak-Kuczynski (M-K) approach. This approach introduces an internal length scale into conventional constitutive equations and takes into account the effects of deformation inhomogeneity and material softening. The...