Loading...
Search for: plates--structural-components
0.011 seconds
Total 160 records

    The numerical investigation of the heat transport in the nanofluids under the impacts of magnetic field: applications in industrial zone

    , Article Mathematical Problems in Engineering ; Volume 2021 , 2021 ; 1024123X (ISSN) Adnan ; Khan, U ; Ahmed, N ; Mohyud Din, S. T ; Khan, I ; Fayz Al Asad, M ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    The dynamics of the nanofluid flow between two plates that are placed parallel to each other is of huge interest due to its numerous applications in different industries. Keeping in view the significance of such flow, investigation of the heat transfer in the Cu-H2O nanofluid is conducted between parallel rotating plates. For more significant results of the study, the squeezing effects are incorporated over the plates that are electrically conducting. The nondimensional flow model is then treated analytically (VPM), and the results are sketched against the preeminent flow parameters. The remarkable heat transfer in the nanofluid is noticed against the Eckert and Prandtl numbers, whereas the... 

    Time-varying structural reliability assessment method: Application to fiber reinforced composites under repeated impact loading

    , Article Composite Structures ; Volume 261 , 2021 ; 02638223 (ISSN) Afshari, S.S ; Pourtakdoust, S. H ; Crawford, B. J ; Seethaler, R ; Milani, A. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Reliability evaluations play a significant role in engineering applications to ensure the serviceability and safety of advanced structures such as those made of composites. Here, a dynamic reliability evaluation analysis based on the probability density evolution Method (PDEM) has been adapted to assess the reliability of composite structures under uncertainties within the material properties and the external loadings. A Back-Propagation Neural Network approach is employed to identify the system's nonlinear structural response, which is often the case under large deformations. To exemplify, a split Hopkinson pressure bar system was employed to mimic the mechanical behavior of a... 

    Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system

    , Article Mechanical Systems and Signal Processing ; Volume 157 , 2021 ; 08883270 (ISSN) Guo, Y ; Mi, H ; Habibi, M ; Sharif University of Technology
    Academic Press  2021
    Abstract
    In this research, electrically performance, vibration/resonance characteristics, low-velocity impact, and absorbed energy of the piezoelectric doubly curved panel on the viscoelastic substrate is carried out. For modeling the contact force between the structure and impactor, Hertz contact theory is presented. Hamilton's principle and first-order shear deformation theory (FSDT) are presented for obtaining the governing and boundary condition equations of the structure under the low-velocity impact. Galerkin and Newmark solution procedures are presented for solving the governing equation in displacement, and time domains, respectively. This study's novelty is considering the effect of... 

    Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate

    , Article Thin-Walled Structures ; Volume 166 , 2021 ; 02638231 (ISSN) He, X ; Ding, J ; Habibi, M ; Safarpour, H ; Safarpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This survey addresses the non-polynomial framework for bending responses of three-phase multi-scale hybrid laminated nanocomposite (MHLNC) reinforced circular/annular plates (MHLNCRCP/ MHLNCRAP) based upon the three-dimensional theory of elasticity for various sets of boundary conditions. The sandwich structure with two, three, five, and seven layers is modeled using compatibility conditions. The state-space based differential quadrature method (SS-DQM) is presented to examine the bending behavior of MHLNCRCP/ MHLNCRAP by considering various boundary conditions. Halpin–Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale... 

    Hydrodynamic performance of multiple co-axial heave plates with different diameters

    , Article Ships and Offshore Structures ; Volume 15, Issue 4 , 2020 , Pages 380-392 Abazari, A ; Behzad, M ; Thiagarajan, K. P ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Heave plates are structural components of a floating structure whose primary purpose is to increase damping and added mass in heave or pitch direction. If multiple plates are stacked along a common axis, then the relative diameters and spacing in between are important factors affecting the performance. In the present study, hydrodynamic coefficients of single, double and triple disks are experimentally investigated in different arrangements as Uniform, Concave and Convex edge shapes. It is observed that each disk in a multiple arrangement with lower diameter ratio have better hydrodynamic performance compared to the cases with higher diameter ratio when the spacing is small compared to the... 

    Hydrodynamic damping enhancement by implementing a novel combined rigid-elastic heave plate

    , Article Journal of Marine Science and Technology (Japan) ; 2020 Abazari, A ; Behzad, M ; Thiagarajan, K ; Sharif University of Technology
    Springer  2020
    Abstract
    Heave plates are structural components used for reducing the vibrations caused by environmental forces on marine and offshore structures by changing the hydrodynamic properties. The fact that the added mass increase via heave plates does not always lead to the structural response reduction underscores the role of damping in maintaining the vibration amplitude within allowable limits. In the present experimental study, a novel combined rigid-elastic design is used to improve the damping through the velocity increase in the elastic part and added mass creation in the central rigid part. The desired percentage of total added mass and damping can be adjusted by changing the rigid-to-elastic... 

    Time-varying structural reliability assessment method: Application to fiber reinforced composites under repeated impact loading

    , Article Composite Structures ; 2020 Saraygord Afshari, S ; Pourtakdoust, S. H ; Crawford, B. J ; Seethalerc, R ; Milani, A. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Reliability evaluations play a significant role in engineering applications to ensure the serviceability and safety of advanced structures such as those made of composites. Here, a dynamic reliability evaluation analysis based on the probability density evolution Method (PDEM) has been adapted to assess the reliability of composite structures under uncertainties within the material properties and the external loadings. A Back-Propagation Neural Network approach is employed to identify the system's nonlinear structural response, which is often the case under large deformations. To exemplify, a split Hopkinson pressure bar system was employed to mimic the mechanical behavior of a... 

    Study of emi-based damage type identification in a cracked metallic specimen repaired by a composite patch

    , Article Russian Journal of Nondestructive Testing ; Volume 56, Issue 6 , 2020 , Pages 540-548 Keshvari Fard, A. H ; Ghasemi, R ; Mohammadi, B ; Sharif University of Technology
    Pleiades Publishing  2020
    Abstract
    Abstract: Using adhesively bonded composite patch repairs has been increased in various industries to improve the structural integrity of cracked metallic structures in recent decades. Monitoring of crack propagation and composite patch debonding, as two dominant failure mechanisms in this repair technique, plays a significant role in the integrity assessment of the component. This research conducts an experimental investigation on the simultaneous monitoring of these two failure mechanisms in a cracked metallic specimen repaired by a composite patch. For this purpose, the electromechanical impedance method was used to evaluate the feasibility of recognizing the type of damage at any phase... 

    Free vibration of joined cylindrical–hemispherical FGM shells

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2185-2199 Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is... 

    Investigation of shear lag effect on tension members fillet-welded connections consisting of single and double channel sections

    , Article Structural Engineering and Mechanics ; Volume 74, Issue 3 , 2020 , Pages 445-455 Barkhori, M ; Maleki, S ; Mirtaheri, M ; Nazeryan, M ; Seyed Mahdi, M. S ; Sharif University of Technology
    Techno Press  2020
    Abstract
    Shear lag phenomenon has long been taken into consideration in various structural codes; however, the AISC provisions have not proposed any specific equation to calculate the shear lag ratio in some cases such as fillet-welded connections of front-to-front double channel sections. Moreover, those equations and formulas proposed by structural codes are based on the studies that were conducted on riveted and bolted connections, and can be applied to single channel sections whilst using them for fillet-welded double channels would be extremely conservative due to the symmetrical shape and the fact that bending moments will not develop in the gusset plate, resulting in less stress concentration.... 

    Three-dimensional stress analysis of structures in instability conditions using nonlinear displacement-based and hybrid-mixed quadrilaterals based on SaS formulation

    , Article International Journal of Non-Linear Mechanics ; Volume 126 , 2020 Bohlooly, M ; Kulikov, G. M ; Plotnikova, S. V ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, the three-dimensional (3D) stress analysis of plate-type structures in instability conditions is presented. The displacement-based and hybrid-mixed four-node quadrilateral elements are developed taking the advantages of the sampling surfaces (SaS) method. The SaS formulation is based on considering inside the plate N not equally spaced SaS parallel to the middle surface to specify the displacements of these surfaces as primary plate unknowns. The displacements, strains and stresses are assumed to be distributed through the thickness using Lagrange polynomials of degree N–1 that lead to a well-set higher-order plate theory. The locations of SaS are based on the use of Chebyshev... 

    Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory

    , Article Mechanics Based Design of Structures and Machines ; 2020 Cheshmeh, E ; Karbon, M ; Eyvazian, A ; Jung, D. W ; Habibi, M ; Safarpour, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In the present study, based on 12-unknown higher order shear deformation theory (HSDT), buckling and vibration analysis of FG-CNTRC rectangular plate are investigated for various types of temperature distribution and boundary conditions. Implementing Hamilton’s principle, the equations of motion are derived and solved by adopting the Navier solution for the simply supported boundary conditions and DQM method for other boundary conditions. Validation is carried out by comparing the numerical results with those obtained in the open literature. Also, a detailed parametric analysis is carried out to illuminate the influence of different system parameters such as CNT distributions, CNT volume... 

    Effect of mode shape switching on the loss factor of sandwich cylinders

    , Article AIAA Journal ; Volume 58, Issue 8 , August , 2020 , Pages 3577-3592 Mokhtari, M ; Asgari, M ; Haddadpour, H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    Damping characteristics of three-layered sandwich cylindrical shells with the focus on mode switching phenomenon are investigated in the present study. All layers of the sandwich cylinder are formulated based on the first-order shear deformation theory. Considering the von Karman strain displacement relations, the nonlinear equations of motion are derived through Hamilton’s principle. By separating the displacement components into previbration and vibration states and substituting in the obtained nonlinear equations of motion, the previbration equilibrium equations and vibration equations of motion are obtained. The acquired equations are solved by applying the generalized differential... 

    Block shear failure in welded gusset plates under combined loading

    , Article Journal of Constructional Steel Research ; Volume 170 , July , 2020 Maleki, S ; Ghaderi Garekani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Block shear failure in the base metal of welded steel connections is a potential failure mode affecting many steel structures. However, there are only a few studies on the block shear failure of welded connections under combined shear and axial loading. Combined loading is defined as a simultaneous loading parallel and perpendicular to the weld lines (or an inclined loading) in the plane of the connecting plate. In this research, a nonlinear finite element model is used to study the effect of connection geometry and weld group configuration on the block shear strength of welded connections under combined loading. In current design standards, the block shear failure planes are assumed to... 

    Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression

    , Article Computers and Concrete ; Volume 26, Issue 1 , 2020 , Pages 21-30 Mirjavadi, S. S ; Forsat, M ; Mollaee, S ; Barati, M. R ; Afshari, B. M ; Hamouda, A. M. S ; Sharif University of Technology
    Techno-Press  2020
    Abstract
    Buckling and post-buckling behaviors of geometrically imperfect annular sector plates made from nanoparticle reinforced composites have been investigated. Two types of nanoparticles are considered including graphene oxide powders (GOPs) and silicone oxide (SiO2). Nanoparticles are considered to have uniform and functionally graded distributions within the matrix and the material properties are derived using Halpin-Tsai procedure. Annular sector plate is formulated based upon thin shell theory considering geometric nonlinearity and imperfectness. After solving the governing equations via Galerkin’s technique, it is showed that the post-buckling curves of annular sector plates rely on the... 

    A general multi-scale modeling framework for two-phase simulation of multi-stream plate-fin heat exchangers

    , Article International Journal of Heat and Mass Transfer ; Volume 156 , 2020 Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Compact heat exchangers are among the vital components used in various industries. In this study, a general framework has been developed with a multi-scale point of view for three-dimensional simulation of multi-stream plate-fin heat exchangers. The most important features in the MSPFHEs simulation, such as phase change phenomena, multi-component mixtures, multiple streams, transversal, lateral and longitudinal conduction, non-uniformity of inlet flow, variable fluid properties, and heat leakage are simultaneously considered in this model. The modular form of the model structure has facilitated layer-by-layer simulation of cross flow heat exchangers as well as parallel flow ones. Our model... 

    Using the hybrid DAS-SR method for damage localization in composite plates

    , Article Composite Structures ; Volume 247 , 2020 Nokhbatolfoghahai, A ; Navazi, H. M ; Groves, R. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, the hybrid Delay-And-Sum (DAS) with Sparse Reconstruction (SR) method was further developed for damage location in composite plates. In composite materials, anisotropy leads to some challenges in using conventional damage location methods, which are developed for isotropic materials. In the hybrid DAS-SR method, the DAS and SR methods were combined as a complement of each other. To investigate the DAS-SR method for composite structures, the group velocity of the travelling wave for different directions was first measured experimentally via PZTs. The DAS and SR formulations were then modified to be compatible with the direction-dependent group velocities. The results show that... 

    High-frequency random vibrations of a stiffened plate with a cutout using energy finite element and experimental methods

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 234, Issue 16 , 2020 , Pages 3297-3317 Nokhbatolfoghahai, A ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, by employing the energy finite element analysis, the high-frequency vibrations of a stiffened plate having a cutout, subjected to random vibrations, have been analyzed, and the obtained results have been validated by use of experimental methods. By using equations for joining of structures, energy finite element analysis computer codes were developed for the coupling of beam-plate elements. Finally, a plate containing a cutout and three stiffeners was fabricated and subjected to high-frequency random vibration tests. The results of the prepared codes were compared with the results of experiments. These comparisons indicated that at high frequencies, the energy finite element... 

    Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM

    , Article Thin-Walled Structures ; Volume 150 , 2020 Safarpour, M ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This is the first research on the free vibration analysis of functionally graded graphene platelets reinforced composite (FG-GPLRC) viscoelastic annular plate resting on the visco-Pasternak foundation and subjected to the nonlinear temperature gradient and mechanical loading within the framework of higher-order shear deformation theory (HSDT). Hamilton's principle is employed to establish governing equations within the framework of HSDT. In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Generalized differential quadrature method (GDQM) is applied... 

    On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk

    , Article Engineering with Computers ; 2020 Safarpour, M ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    This is the first research on the nonlinear frequency analysis of a multi-scale hybrid nanocomposite (MHC) disk (MHCD) resting on an elastic foundation subjected to nonlinear temperature gradient and mechanical loading is investigated. The matrix material is reinforced with carbon nanotubes (CNTs) or carbon fibers (CF) at the nano- or macroscale, respectively. We present a modified Halpin–Tsai model to predict the effective properties of the MHCD. The displacement–strain of nonlinear vibration of multi-scale laminated disk via third-order shear deformation theory (TSDT) and using Von Karman nonlinear shell theory is obtained. Hamilton’s principle is employed to establish the governing...