Loading...
Search for: plates--structural-components
0.016 seconds
Total 160 records

    Behaviour of End-Plate Connections in 3D Frames Under Fire Conditions: Experimental Study

    , Article International Journal of Steel Structures ; Volume 18, Issue 3 , 2018 , Pages 734-749 ; 15982351 (ISSN) Khonsari, S.V ; Vosough Grayli, P ; Ghorbani, A ; Roshani Moghaddam, A ; Sharif University of Technology
    Korean Society of Steel Construction  2018
    Abstract
    Due to high vulnerability of steel structures to elevated temperatures and the need for taking adequate and effective measures to reduce human and financial losses in fires, a thorough understanding of such behaviour is of utmost importance. In this research, a half-scale 3D model, comprising moment-resisting frames, equipped with flush end-plate connections, in one direction, and braced frames in the other, was subjected to a scaled ISO 834 standard fire. The maximum attained temperature was 1055 °C. The results showed that the structure tolerates high temperatures for an appreciable amount of time before collapsing. Moreover, for thick flush end-plates, which were used in this study, the... 

    Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: a comparative study on modified couple stress theory and nonlocal elasticity theory

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 11 , 2018 , Pages 2492-2507 ; 1045389X (ISSN) Shojaeefard, M. H ; Saeidi Googarchin, H ; Mahinzare, M ; Eftekhari, S. A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this article, free vibration behavior of a rotating nano/microcircular plate constructed from functionally graded magneto-elastic material is simulated with the first-order shear deformation theory. For the sake of comparison, the nonlocal elasticity theory and the modified couple stress theory are employed to implement the small size effect in the natural frequencies behavior of the nano/microcircular plate. The governing equations of motion for functionally graded magneto-elastic material nano/microcircular plates are derived based on Hamilton’s principle; comparing the obtained results with those in the literature, they are in a good agreement. Finally, the governing equations are... 

    Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

    , Article Structural Engineering and Mechanics ; Volume 66, Issue 5 , 10 June , 2018 , Pages 621-629 ; 12254568 (ISSN) Hosseini Kordkheili, S. A ; Mousavi, T ; Bahai, H ; Sharif University of Technology
    Techno Press  2018
    Abstract
    By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos. Copyright © 2018 Techno-Press,... 

    Adopting image theorem for rigorous analysis of a perfect electric conductor–backed array of graphene ribbons

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 8 , 2018 , Pages 1836-1844 ; 07403224 (ISSN) Rahmanzadeh, M ; Abdolali, A ; Khavasi, A ; Rajabalipanah, H ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Analytical and numerical study of graphene ribbons has become a prime focus of recent research due to their potential applications in tunable absorption, wavefront manipulation, polarization conversion, and so on. In this paper, an accurate analysis of a perfect electric conductor (PEC)–backed array of graphene ribbons (PAGR) is presented based on the well-known electromagnetic (EM) image theorem, where the induced currents are theoretically derived under a transverse-magnetic-polarized incident wave. For the first time, the proposed analysis rigorously incorporates the EM coupling effects between the PEC back plate and the subwavelength array of graphene ribbons. It is proved that the... 

    On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory

    , Article Acta Mechanica ; Volume 229, Issue 6 , 2018 , Pages 2413-2430 ; 00015970 (ISSN) Asadi, H ; Rabiei Beheshti, A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    The purpose of this study is to analyze the nonlinear dynamic responses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams exposed to axial supersonic airflow in thermal environments. The dynamic model of the FG-CNTRC beam is developed with regard to the first-order shear deformation theory incorporating the von Kármán geometrical nonlinearity. The thermomechanical properties of the constituents are assumed to be temperature dependent. The third-order piston theory is adopted to estimate the nonlinear aerodynamic pressure induced by the supersonic airflow. Harmonic differential quadrature method is implemented to discretize the equations of motion in the spatial... 

    Seismic performance of precast RC column to steel beam connections with variable joint configurations

    , Article Engineering Structures ; Volume 160 , April , 2018 , Pages 408-418 ; 01410296 (ISSN) Khaloo, A ; Bakhtiari Doost, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the last decades, noticeable experimental and analytical investigations have been carried out on cast-in-place Reinforced Concrete column to Steel beam (RCS) connections, however rarely have been conducted on the precast RCS. In this paper, test results of four half-scale interior precast RCS connections with variable joint configurations are presented. The steel beams were connected to the precast column, using three specimens with extended face bearing plates and one with extended cover plates, embedded in the connection zone. The flanges of beams were strengthened with respect to scaled section, in order to increase the load transfer to the joint. All samples were loaded under reversed... 

    A layerwise finite element for geometrically nonlinear analysis of composite shells

    , Article Composite Structures ; Volume 186 , 2018 , Pages 355-364 ; 02638223 (ISSN) Hosseini Kordkheili, S. A ; Soltani, Z ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This work aims to develop a nonlinear layerwise shell element formulation for shear-deformable laminated composite plate and shell structures. The element is formulated based on a zigzag theory in presence of individual local coordinates in the thickness direction for separate layers. In order to properly employ the zigzag theory, the considered local coordinates have different ranges of variation for middle, upper and lower layers. Using Mindlin-Reissner theory a convenient displacement field is derived for each layer and an ordered algorithm is adapted to calculate increments in the director vector of each layer due to relative finite rotations of its adjacent layers. Employing this shear... 

    Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors

    , Article Journal of Electroanalytical Chemistry ; Volume 810 , 2018 , Pages 78-85 ; 15726657 (ISSN) Rahimi, S ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The design of 3-dimensional (3-D) nanostructured materials on the novel current collectors has recently considered as a promising strategy for developing high-performance supercapacitors. Herein, in the first step, a novel 3-D nickel nanocone arrays (NCAs) are synthesized on the surface of nickel plate (NP) by a one-step electrodeposition method without using any template (NCAs-NP). Then, a simple and efficient method is developed for fabricating ternary metal sulfides electrodes based on the electrodeposition of nickel cobalt iron sulfide (Ni-Co-Fe-S) ultrathin nanosheets on the surface of NCAs-NP. Taking advantages of the unique flower like structure of Ni-Co-Fe-S ultrathin nanosheets and... 

    A comprehensive thermo-economic analysis, optimization and ranking of different microturbine plate-fin recuperators designs employing similar and dissimilar fins on hot and cold sides with NSGA-II algorithm and DEA model

    , Article Applied Thermal Engineering ; Volume 130 , February , 2018 , Pages 1090-1104 ; 13594311 (ISSN) Maghsoudi, P ; Sadeghi, S ; Khanjarpanah, H ; Haghshenas Gorgani, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study aims to perform a comprehensive thermo-economic analysis, optimization and ranking of cross and counter-flow plate-fin recuperators employing rectangular, triangular, offset strip and louver fins. The analysis is mainly conducted for two recuperator structures: (i) fins’ configurations on both hot and cold sides are the same; (ii) fins on hot side and cold side are dissimilar in configuration. Considering effective practical optimization constraints and design parameters, Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to maximize the recuperator effectiveness and minimize its total cost, simultaneously. Pareto-optimal fronts are presented to specify the desirable... 

    Evaluation of PR steel frame connection with torsional plate and its optimal placement

    , Article Scientia Iranica ; Volume 25, Issue 3A , 2018 , Pages 1025-1038 ; 10263098 (ISSN) Moghadam, A ; Estekanchi, H.E ; Yekrangnia, M ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Characteristics of connections in steel moment-resisting frames are of utmost importance in determining the seismic performance of these structural systems. The results of several previous experimental studies have indicated that Partially Restrained (PR) connections possess excellent properties, which make them a reliable substitution for Fully Restrained (FR) connections. These properties include needing less base shear, being more economic, and, in many cases, being able to absorb more energy. In this study, the behavior of two proposed PR connections with torsional plate is studied through finite element simulations. The results of the numerical studies regarding initial stiffness and... 

    Vibration behavior of laminated composite beams integrated with magnetorheological fluid layer

    , Article Journal of Mechanics ; Volume 33, Issue 4 , 2017 , Pages 417-425 ; 17277191 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    Vibration behavior of adaptive laminated composite beams integrated with magnetorheological (MR) fluid layer has been investigated using layerwise displacement theory. In most of the existing studies on the adaptive laminated beams with MR fluids, shear strain across the thickness of magnetorheological (MR) layer has been assumed a constant value, resulting in a constant shear stress in MR layer. However, due to the high shear deformation pattern inside MR layer, this assumption is not adequate to accurately describe the shear strain and stress in MR fluid layer. In this work a modified layerwise theory is employed to develop a Finite Element Model (FEM) formulation to simulate the laminated... 

    Development of an accurate finite element model for N-layer MR-laminated beams using a layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-8 ; 15376494 (ISSN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Laminated composite beams incorporated with magneto-rheological fluid are being used in variety of critical applications. An N-layer magneto-rheological-laminated beam based on layerwise theory has been developed to study the dynamic characteristics. For simulation purpose, an MR-laminated beam with five layers is considered in which two layers filled with magneto-rheological and three layers are made of composite materials. The results of simulations are compared with existing layerwise, first-order shear-deformation theory and experimental tests where it shows the accuracy and functionality of the present model. The complex shear modulus of magneto-rheological fluid has been determined... 

    On an extended Kantorovich method for the mechanical behavior of functionally graded solid/annular sector plates with various boundary conditions

    , Article Acta Mechanica ; Volume 228, Issue 7 , 2017 , Pages 2655-2674 ; 00015970 (ISSN) Fallah, F ; Khakbaz, A ; Sharif University of Technology
    Springer-Verlag Wien  2017
    Abstract
    Based on the first-order shear deformation plate theory, two approaches within the extended Kantorovich method (EKM) are presented for a bending analysis of functionally graded annular sector plates with arbitrary boundary conditions subjected to both uniform and non-uniform loadings. In the first approach, EKM is applied to the functional of the problem, while in the second one EKM is applied to the weighted integral form of the governing differential equations of the problem as presented by Kerr. In both approaches, the system of ordinary differential equations with variable coefficients in r direction and the set of ordinary differential equations with constant coefficients in θ direction... 

    Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading

    , Article Meccanica ; Volume 52, Issue 7 , 2017 , Pages 1495-1502 ; 00256455 (ISSN) Asgari, M ; Permoon, M. R ; Haddadpour, H ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The stability of a viscoelastic plate strip, subjected to an axial load with the Kelvin–Voigt fractional order constitutive relationship is studied. Based on the classical plate theory, the structural formulation of the plate is obtained by using the Newton’s second law and the aerodynamic force due to the fluid flow is evaluated by piston theory. The Galerkin method is employed to discretize the equation of motion into a set of ordinary differential equations. To determine the stability margin of plate the obtained set of ordinary differential equations are solved using the Laplace transform method. The effects of variation of the governing parameters such as axial force, retardation time,... 

    Dynamic response of geometrically nonlinear, elastic rectangular plates under a moving mass loading by inclusion of all inertial components

    , Article Journal of Sound and Vibration ; Volume 394 , 2017 , Pages 497-514 ; 0022460X (ISSN) Rahimzadeh Rofooei, F ; Enshaeian, A ; Nikkhoo, A ; Sharif University of Technology
    Academic Press  2017
    Abstract
    Dynamic deformations of beams and plates under moving objects have extensively been studied in the past. In this work, the dynamic response of geometrically nonlinear rectangular elastic plates subjected to moving mass loading is numerically investigated. A rectangular von Karman plate with various boundary conditions is modeled using specifically developed geometrically nonlinear plate elements. In the available finite element (FE) codes the only way to distinguish between moving masses from moving loads is to model the moving mass as a separate entity. However, these procedures still do not guarantee the inclusion of all inertial effects associated with the moving mass. In a prepared... 

    Modified fresnel zone plate - an example for systematic excitation of subradiant modes of a plasmonic structure

    , Article IEEE Journal of Quantum Electronics ; Volume 53, Issue 2 , 2017 ; 00189197 (ISSN) Armand, M. J ; Khajeahsani, M. S ; Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Subradiant modes can exhibit sharper spectral response, and lower radiative loss compared to the super-radiant modes of plasmonic nanostructures. Selective excitation of these modes is challenging, and has practical importance. In this paper, a systematic procedure for determining, and individually exciting the subradiant modes of a plasmonic nanostructure is presented by utilizing our previously reported T-matrix formulation. As an example, we calculate various modes of a gold nanodimer, and determine the incident field required for exciting a subradiant mode of this nanostructure. This field is then generated by a modified zone plate lens. The expansion of scattered field, as well as the... 

    Optimized design procedure for coupling panels in steel plate shear walls

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 1 , 2017 ; 15417794 (ISSN) Sadeghi Eshkevari, S ; Dolatshahi, K. M ; Mofid, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Coupling beams have had a widespread application as performance enhancing devices within concrete structures and more recently also in steel structures. However, the conventional coupling beams are not so efficient in coupling distant walls. In this paper, a novel form of coupling members, namely, coupling panels is proposed and, then, the application for a nine-story building is investigated. Coupling panels are steel plates which are exerted in the intermediate spans between adjacent shear walls and act as a mega-coupling beam. First, a verified finite element model is constructed to demonstrate coupling panel behavior along with its global structural mechanism. Subsequently, a nine story... 

    On the improvement of steel plate shear wall behavior using energy absorbent element

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 11-18 ; 10263098 (ISSN) Emami, F ; Mofid, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Structural engineers have recognized unstiffened Steel Plate Shear Wall (SPSW) as an economical lateral resisting system due to the post-buckling capacity, energy dissipation, and deformability. This study investigates practical application of an added Energy Absorbent Element (EAE), subjoined to the SPSW in order to improve seismic behavior of the SPSW. The EAE is an aluminum shear panel with or without bracings and surrounding frame. Furthermore, a series of parametric studies are implemented to examine the effect of dimensions, position, and formation of the EAE. It is assumed that the lateral loading is applied as quasi-static loading. Further, nonlinearity of the material and the... 

    Parallel-plate waveguide integrated filters and lenses realized by metallic posts for terahertz applications

    , Article International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 25 September 2016 through 30 September 2016 ; Volume 2016-November , 2016 ; 21622027 (ISSN) ; 9781467384858 (ISBN) Ahmadi Boroujeni, M ; Sharif University of Technology
    IEEE Computer Society  2016
    Abstract
    In this paper, we report on the design and analysis of filters and lenses realized by an array of metallic posts integrated in a parallel-plate waveguide (PPWG). The design methodology of these components is inferred from the modal analysis of a spoof surface plasmonic waveguide composed of metallic posts arranged in a 1D periodic structure inside PPWG. Samples of the proposed devices are analyzed using a full-wave analysis method and their performance is assessed. We show that the mentioned structure can be used to realize all-metallic band-pass filters and lenses for mm-wave and terahertz applications  

    Differential quadrature method for nonlocal nonlinear vibration analysis of a boron nitride nanotube using sinusoidal shear deformation theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 11 , 2016 , Pages 1278-1283 ; 15376494 (ISSN) Sadatshojaei, E ; Sadatshojaie, A ; Fakhar, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    This article presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single-walled boron nitride nanotubes (SWBNNTs). The surrounding elastic medium is simulated based on nonlinear Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the SWBNNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the nonlinear frequency is presented, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, vibrational modes, length, and elastic medium on the nonlinear frequency of SWBNNTs...