Loading...
Search for: platinum
0.009 seconds
Total 134 records

    Mechanistic insights into photogenerated electrons store-and-discharge in hydrogenated glucose template synthesized Pt: TiO2/WO3 photocatalyst for the round-the-clock decomposition of methanol

    , Article Materials Research Bulletin ; Volume 137 , 2021 ; 00255408 (ISSN) Mokhtarifar, M ; Nguyen, D. T ; Sakar, M ; Pedeferri, M ; Asa, M ; Kaveh, R ; Diamanti, M. V ; Do, T. O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrates the glucose-template assisted synthesis of hydrogen-treated Pt: TiO2/WO3 composites, and their round-the-clock photoactivity towards methanol (MeOH) degradation under light illumination and in dark. XRD indicated increasing rutile fraction in TiO2 as a function of template removal, WO3 crystallinity and H2 treatment process. The presence of oxygen vacancies in WO3 was confirmed by XPS. Lower recombination rate and higher surface area were observed in the optimized H2-Pt-G:TiO2/WO3 catalyst. The presence of oxygen vacancies and optical enhancements due to the synergistic interactions of the multi-system (TiO2, WO3 and Pt) extended the visible light absorption of the... 

    Kinetic study and growth behavior of template-based electrodeposited platinum nanotubes controlled by overpotential

    , Article Materials Chemistry and Physics ; Volume 187 , 2017 , Pages 141-148 ; 02540584 (ISSN) Yousefi, E ; Dolati, A ; Imanieh, I ; Yashiro, H ; Kure-Chu, S. Z ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H2PtCl6 and 0.1 M H2SO4. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The... 

    Kinetics of platinum extraction from spent reforming catalysts in aqua-regia solutions

    , Article Hydrometallurgy ; Volume 95, Issue 3-4 , 2009 , Pages 247-253 ; 0304386X (ISSN) Baghalha, M ; Khosravian Gh., H ; Mortaheb, H. R ; Sharif University of Technology
    2009
    Abstract
    Platinum content of two commercial spent reforming catalysts were extracted in aqua-regia solutions under atmospheric pressure and at temperatures up to 100 °C. Three factors, including presence of coke, catalyst particle size, and impeller agitation speed were first tested to study the relative importance of mass-transfer resistances during Pt extraction reaction. Catalyst particle sizes < 100 μm and agitation speeds > 700 rpm eliminated the internal and external mass-transfer resistances, respectively. The effect of other factors, including HNO3-to-HCl volume ratio, liquid-to-solid mass ratio, and the reaction temperature on the extraction rate of platinum were then examined. Pt extraction... 

    Kinetics of chemical ordering in a Ag-Pt nanoalloy particle via first-principles simulations

    , Article Journal of Chemical Physics ; Volume 137, Issue 19 , 2012 ; 00219606 (ISSN) Negreiros, F. R ; Taherkhani, F ; Parsafar, G ; Caro, A ; Fortunelli, A ; Sharif University of Technology
    2012
    Abstract
    The energetics and kinetic energy barriers of vacancy/atom exchange in a 37-atom truncated octahedron Ag-Pt binary cluster in the Ag-rich range of compositions are investigated via a first-principles atomistic approach. The energy of the local minima obtained considering various distributions of a single vacancy and a few Pt atoms within the cluster and the energy barriers connecting them are evaluated using accurate density-functional calculations. The effects of the simultaneous presence of a vacancy and Pt atoms are found to be simply additive when their distances are larger than first-neighbors, whereas when they can be stabilizing at low Pt content due to the release of strain by the... 

    Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 107, Issue 1 , 2012 , Pages 141-155 ; 18785190 (ISSN) Barghi, B ; Fattahi, M ; Khorasheh, F ; Sharif University of Technology
    Springer  2012
    Abstract
    The aim of this study was to develop an appropriate kinetic model for propane dehydrogenation (PDH) over an industrial Pt-Sn/γ-Al 2O 3 catalyst in the presence of small amounts of oxygenated compounds. Experimental data were obtained from a previous study where catalytic PDH was carried out in a laboratory scale reactor at atmospheric pressure in the temperature range of 575-620 °C in the presence of small amounts of water or methanol. The kinetics of the main dehydrogenation reaction was described and the effects of water and methanol on coke deposition and catalyst sintering were considered in a catalyst deactivation model to explain the observed optimum level in the amount of added... 

    Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell

    , Article Electrochimica Acta ; Volume 97 , 2013 , Pages 216-225 ; 00134686 (ISSN) Gharibi, H ; Amani, M ; Pahlavanzadeh, H ; Kazemeini, M ; Sharif University of Technology
    2013
    Abstract
    Polyaniline fiber (PANI) was synthesized by chemical interfacial method and doped with para toluene sulfonic acid (PTSA) through a sequential doping-dedoping-redoping process resulting in PANI-PTSA. The doped material was utilized to fabricate Vulcan-polyaniline composite of C-PANI-PTSA. Next, through reduction, Pt particles were deposited on to this composite to produce a Pt/C-PANI-PTSA electrocatalyst. To investigate the PANI-PTSA interaction with the carbon support as well as, to consider its effect upon the catalytic activity of Pt/C-PANI-PTSA, electrocatalysts with different ratios of 10, 15, 20, 25 and 30 wt% were synthesized and their activity was compared with the Pt/C (Electrochem).... 

    Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells

    , Article Journal of Bioscience and Bioengineering ; Volume 129, Issue 1 , 2020 , Pages 67-76 Ghasemi, B ; Yaghmaei, S ; Abdi, K ; Mardanpour, M. M ; Haddadi, S. A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This study reports the fabrication of a new cathode electrode assembly using polyaniline (PANI) and graphene on a stainless steel mesh (SSM) as an alternative for the conventional expensive cathode of microbial electrolysis cells (MECs). With respect to the previous efforts to propose an efficient and cost-effective alternative for platinum (Pt) catalysts and cathode electrodes, the present study investigates the assessment of different catalysts to elucidate the potential of the modified SSM cathode electrode for larger-scale MECs. In the case of feeding dairy wastewater to the MEC, the maximum hydrogen production rate and COD removal were obtained by SSM/PANI/graphene cathode and had the... 

    Influence of photoanode architecture on light scattering mechanism and device performance of dye-sensitized solar cells using TiO2 hollow cubes and nanoparticles

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 86 , May , 2018 , Pages 81-91 ; 18761070 (ISSN) Sarvari, N ; Mohammadi, M. R ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2018
    Abstract
    Herein, we report the impact of light scattering mechanism on photovoltaic and photoelectrochemical performance of dye-sensitized solar cell (DSC) devices composed of TiO2 nanoparticles and hollow cubes. DSCs are designed by two different light scattering modes (i.e., mode I in form of single layer electrode containing nanoparticles and hollow cubes and mode II in the form of double layer electrode comprising active and scattering layers made of nanoparticles and mixtures of nanoparticles and hollow cubes, respectively). The synthesized anatase-TiO2 hollow cubes (200–400 nm) and nanoparticles (15–30 nm) are employed to enhance the optical length and light harvesting of photoanodes,... 

    Improving transparency in dye-sensitized nanostructured solar cells by optimizing nano-porous titanium dioxide photo-electrode

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 11 , 2017 , Pages 7811-7818 ; 09574522 (ISSN) Nikfarjam, A ; Mohammadpour, R ; Kasaeian, A ; Zebhi, Z ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Today’s the technology based on dye-sensitized solar cells (DSSCs) has an important role in all photovoltaic system technologies. DSSCs can generate electricity with various degrees of transparency; this makes it suitable for use in various industries, especially in construction industry as smart windows. In fact DSSC can produce electricity and having natural light, simultaneously. It is obvious that DSSCs need to absorb solar radiation as much as possible. Since, the effective use of all incident lights leads to an increase in cell efficiency and this increase in efficiency is related to the amount of dye adsorbed on the surface of nanostructured electrode, so higher amount of dye for... 

    Improved H2 production from the APR of polyols in a microreactor utilizing Pt supported on a CeO2–Al2O3 structured catalyst

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 48 , 2018 , Pages 21777-21790 ; 03603199 (ISSN) Entezary, B ; Kazemeini, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this research, the activity and selectivity of a platinum-based catalyst for H2 production through aqueous phase reforming (APR) in a fixed-bed reactor (FBR) as well as, a structured catalyst microreactor (MR) were investigated. In this venue, first, an in-house designed MR was fabricated and the catalytic material was deposited on the channel walls of this steel made reactor. After verification of the stability of the coated layer, the prepared reactor was employed to investigate the APR reaction. In this regard, APR of the ethylene glycol and glycerol over Pt/Al2O3 and Pt/CeO2–Al2O3 catalyst were conducted in an MR and FBR. Obtained results demonstrated that employing Pt/CeO2–Al2O3 as a... 

    Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples

    , Article Journal of Hazardous Materials ; Volume 165, Issue 1-3 , 2009 , Pages 353-358 ; 03043894 (ISSN) Bagheri, H ; Naderi, M ; Sharif University of Technology
    2009

    Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO)

    , Article Nanotechnology ; Volume 29, Issue 1 , 2018 ; 09574484 (ISSN) Fardindoost, S ; Hatamie, S ; Zad, A. I ; Astaraei, F. R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    This paper reports on hydrogen sensing based graphene oxide hybrid with Co-based metal organic frameworks (Co-MOFs@GO) prepared by the hydrothermal process. The texture and morphology of the hybrid were characterized by powder x-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Porous flower like structures assembled from Co-MOFs and GO flakes with sufficient specific surface area are obtained, which are ideal for gas molecules diffusion and interactions. Sensing performance of Co-MOFs@GO were tested and also improved by sputtering platinum (Pt) as a catalyst. The Pt-sputtered Co-MOFs@GO show outstanding hydrogen resistive-sensing with response and recovery... 

    High-performance/low-temperature-processed dye solar cell counter electrodes based on chromium substrates with cube-like morphology

    , Article Journal of Power Sources ; Vol. 260 , 2014 , Pages 299-306 ; ISSN: 03787753 Behrouznejad, F ; Taghavinia, N ; Sharif University of Technology
    Abstract
    There is still an open question of how to prepare high-performance counter electrodes for dye solar cells (DSCs) at room temperature; a requirement for flexible DSCs. Here, we introduce Pt deposited cube-like chromium coating as a low-temperature highly-efficient counter electrode for DSCs. Cr is a chemically stable metal and can be easily electroplated on conductive substrates with high roughness (here ∼160 nm) and cube-like appearance. A cyclic electrochemical deposition method with optimized temperature and number of cycles is used to grow Pt nanoparticles on this surface and charge transfer resistance as low as 0.54 Ω cm2 and 0.27 Ω cm2 were obtained at 40 °C and 55 °C solution... 

    Highly selective doped Pt[sbnd]MgO nano-sheets for renewable hydrogen production from APR of glycerol

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 39 , 2016 , Pages 17390-17398 ; 03603199 (ISSN) Larimi, A. S ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A series of M-doped Pt[sbnd]MgO (M = Pd, Ir, Re, Ru, Rh and Cr) sheet-shaped nano-catalysts were synthesized by the controlled co-precipitation method. The effects of M-doping on both the physicochemical and the chemisorption characteristics of Pt[sbnd]MgO catalysts were examined. The performance of the catalysts for the aqueous phase reforming (APR) of glycerol was also investigated. The APR activity of Pt[sbnd]M[sbnd]MgO catalysts depended on the type of the M dopant used. The APR activity varied in the following order: Rh > Pd > Cr > Ir > undoped ≈ Ru > Re, with the Rh-promoted catalyst having an activity of about one order of magnitude higher than the Re-promoted catalyst at 250 °C. It... 

    Green synthesis of Ag–Pt bimetallic nanoparticles supported on the Metal–Organic framework (MOF)–Derived metal oxides (γ-Fe2O3/CuO) nanocomposite as a reusable heterogeneous nanocatalyst and nanophotocatalyst

    , Article Materials Chemistry and Physics ; Volume 261 , 2021 ; 02540584 (ISSN) Gholizadeh Khasevani, S ; Taheri, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The heterogeneous environmentally friendly catalyst and photocatalyst based on Ag, Pt, Ag–Pt nanoparticles (NPs) loading on the γ-Fe2O3/CuO nanocomposite which was derived from Fe-metal organic framework (Fe-MIL-88B) and Cu-metal organic framework (Cu (tpa)) was introduced. The catalytic and photocatalytic activities of Ag–Pt loading on the γ-Fe2O3/CuO nanocomposite were performed for a reduction process (4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp)), and decomposition organic dyes (AB92, MB) in the LED light. Metal-organic framework (MOFs) composed with inorganic and organic linker which used as suitable precursors to obtain different type of nanostructures for environmental applications.... 

    First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Morad, R ; Akbari, M ; Rezaee, P ; Koochaki, A ; Maaza, M ; Jamshidi, Z ; Sharif University of Technology
    Nature Research  2021
    Abstract
    From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt... 

    Finite-element analysis of platinum-based cone microelectrodes for implantable neural recording

    , Article 2009 4th International IEEE/EMBS Conference on Neural Engineering, NER '09, Antalya, 29 April 2009 through 2 May 2009 ; 2009 , Pages 395-398 ; 9781424420735 (ISBN) Zarifi, M. H ; Frounchi, J ; Jahed, N ; Tinati, M. A ; National Institutes of Health, NIH; National Institute of Neurological Disorders and Stroke, NINDS; National Science Foundation, NSF ; Sharif University of Technology
    2009
    Abstract
    There have been significant advances in fabrication of high-density microelectrode arrays using silicon micromachining technology in neural signal recording systems. The interface between microelectrodes and chemical environment brings great interest to researchers working on extracellular stimulation. This interface is quite complex and must be modeled carefully to match experimental results. Computer simulation is a method to increase the knowledge about these arrays and to this end the finite element method provides a strong environment for investigation of relative changes of the electrical field extension surrounding an electrode positioned in chemical environment. In this paper FEM... 

    Factors affecting platinum extraction from used reforming catalysts in iodine solutions at temperatures up to 95 °C

    , Article Hydrometallurgy ; Volume 97, Issue 1-2 , 2009 , Pages 119-125 ; 0304386X (ISSN) Zanjani, A ; Baghalha, M ; Sharif University of Technology
    2009
    Abstract
    Platinum extraction from the spent reforming catalysts in iodine-iodide solutions at temperatures from 25 to 95 °C was investigated. The reforming catalyst mostly consists of a porous gamma alumina support with metallic platinum finely dispersed on the walls of the nano-pores of the catalyst support. The effect of a variety of factors, including catalyst particle size, impeller agitation speed, reactant concentrations, liquid to solid mass ratio, temperature and the solution pH on the Pt extraction rate and recovery were investigated. It was found that the catalyst particle sizes less than 106 μm and impeller agitation speed higher than 700 rpm eliminated the effects of catalyst size and... 

    Fabrication of MEA based on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs

    , Article RSC Advances ; 2015 , Pages 85775-85784 ; 20462069 (ISSN) Gharibi, H ; Yasi, F ; Kazemeini, M ; Heydari, A ; Golmohammadi, F ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The Nafion ionomer affects the efficiency of the platinum (Pt) catalyst by blocking the active sites thereby restricting the gas permeability of the catalyst layer; but, there is a limitation in the quantity of Nafion ionomer that needs to be added without affecting the cell performance. Sulfonation of carbon-supported catalysts as mixed electronic and protonic conductors has been reported to be an efficient way to increase the triple-phase boundaries. In order to improve the utilization and activity of cathodic catalysts in the oxygen reduction reaction (ORR), Pt nanoparticles were loaded on a mixture of Vulcan XC-72R and MWCNTs, which were functionalized in a mixture of 96% sulfuric acid... 

    Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 1 , 2014 , p. 77-88 Shahrokhian, S ; Hosseini-Nassab, N ; Kamalzadeh, Z ; Sharif University of Technology
    Abstract
    A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01-10.00 μM with a detection limit of...