Loading...
Search for: polyethylenes
0.008 seconds

    Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 58 , April , 2014 , pp. 146-152 ; ISSN: 13869477 Marandi, M ; Taghavinia, N ; Babaei, A ; Sharif University of Technology
    Abstract
    CdS nanocrystals were thermochemically (thermally activated) synthesized thorough the reaction between CdSO4 and Na2S 2O3 in an aqueous solution. Thioglycolic Acid (TGA) was used as the capping agent and catalyst of the reaction. The method was based on heat activated dissociation of Na2S2O3 and controllable release of S and free electrons in the solution. CdS NCs were formed by heating the sample solution at 96 C for 1 h. The results of optical spectroscopy and transmission electron microscopy demonstrated round shape NCs with sizes about 3.0 nm. The nanocrystals were also luminescent and represented a broad emission with a peak located at 515 nm and FWHM of 160 nm. Several samples were... 

    Solvothermal synthesis of CuMS2 (M=A1, In, Fe) nanoparticles and effect of coordinating solvent on the crystalline structure

    , Article Scientia Iranica ; Volume 21, Issue 6 , 2014 , Pages 2468-2478 ; ISSN: 10263098 Vahidshad, Y ; Ghasemzadeh, R ; Zad, A. I ; Mirkazemi, S. M ; Masoud, A ; Sharif University of Technology
    Abstract
    CuMS2 (M=A1, In, Fe) ternary compounds were synthesized via the facile polyol method in autoclave. Depending on the functional groups of solvent and surfactant, the structure of the nanocrystals can be controlled in the form of wurtzite or chalcopyrite. The chalcopyrite structure was obtained when the precursors solved in the mixture of diethylene glycol, polyethylene glycol 600 and ammonium hydroxide. When the solvent was replaced by ethylene diamine, the wurtzite was obtained along with chalcopyrite (polytypism). The products were characterized by X-Ray Diffraction (XRD) for analysis of structural properties, Transmission Electron Microscopy (TEM) for studying morphological... 

    Monodispersed polymeric nanoparticles fabrication by electrospray atomization

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 61, Issue 8 , 2012 , Pages 611-626 ; 00914037 (ISSN) Zarrabi, A ; Vossoughi, M ; Alemzadeh, I ; Chitsazi, M. R ; Sharif University of Technology
    2012
    Abstract
    The feasibility of fabricating relatively monodispersed polymeric nanoparticles by the electrospray method in a modified electrospray set-up is demonstrated in this study. The polymer solution is electrosprayed in the single cone-jet regime through a nozzle. After solvent evaporation, during which particles pave from the nozzle to collector, the fabricated nanoparticles can be collected in deionized water, which plays the role of surfactant for particles, not allowing them to aggregate. The results of scanning electron microscope and dynamic light scattering analysis clearly confirm the fabrication of monodispersed spherical polymeric nanoparticles with diameter range from 80 to 120nm with... 

    Mixed electroosmotically and pressure-driven flow with temperature- dependent properties

    , Article Journal of Thermophysics and Heat Transfer ; Volume 25, Issue 3 , Sep , 2011 , Pages 432-442 ; 08878722 (ISSN) Sadeghi, A ; Yavari, H ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2011
    Abstract
    The present work reports the outcome of a comprehensive parametric study on mixed electroosmotically and pressure-driven flow in slit microchannels with constant wall heat fluxes. Special attention is given to disclose the applicability ranges of usual assumptions in simplified analyses. The governing equations for fully developed conditions are first made dimensionless and then solved by means of an implicit finite difference method. The results reveal that the assumption of constant thermophysical properties does not leadto significant errors in practical applications. Although the Debye-Huckel linearization may successfully be used to evaluate velocity profiles up to the zeta potentials... 

    Modeling of osmotic pressure of aqueous poly(ethylene glycol) solutions using the artificial neural network and free volume flory huggins model

    , Article Journal of Dispersion Science and Technology ; Volume 32, Issue 7 , 2011 , Pages 1054-1059 ; 01932691 (ISSN) Naeini, A. T ; Pazuki, G. R ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2011
    Abstract
    In this work, the modified Flory-Huggins coupled with the free-volume concept and the artificial neural network models were used to obtain the osmotic pressure of aqueous poly(ethylene glycol) solutions. In the artificial neural network, the osmotic pressure of aqueous poly(ethylene glycol) solutions depends on temperature, molecular weight and the mole fractions of poly(ethylene glycol) in aqueous solution. The network topology is optimized and the (3-1-1) architecture is found using optimization of an objective function with batch back propagation (BBP) method for 134 experimental data points. The results obtained from the neural network in obtaining of the osmotic pressure of aqueous... 

    Hybrid nanomaterials containing PAMAM, polyrotaxane and quantum dot blocks

    , Article Nano ; Volume 6, Issue 3 , June , 2011 , Pages 239-249 ; 17932920 (ISSN) Adeli, M ; Sarabi, R. S ; Sadeghi, E ; Sharif University of Technology
    2011
    Abstract
    Pseudopolyrotaxanes, Ps-PR, consisting of α-cyclodextrin rings, polyethylene glycol axes and end triazine groups were prepared and then were capped by amino-functionalized quantum dots, NH 2-QDs, to achieve polyrotaxanes. The amino-functionalized QDs stoppers of polyrotaxanes were used as core to synthesize polyamidoamine, PAMAM, dendrons divergently and hybrid nanomaterials were obtained. Synthesized hybrid nanomaterials were characterized by different spectroscopy, microscopy and thermal analysis methods. They were freely soluble in water and their aqueous solutions were stable at room temperature over several months. Due to their biocompatible backbone, high functionality and water... 

    Investigating and modeling the cleaning-in-place process for retrieving the membrane permeate flux: Case study of hydrophilic polyethersulfone (PES)

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 62 , May , 2016 , Pages 150–157 ; 18761070 (ISSN) Hedayati Moghaddam, A ; Shayegan, J ; Sargolzaei, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2016
    Abstract
    In this work the effects of backwash pressure, duration of acid and sodium hydroxide backwashing, sodium hydroxide concentration, and the duration of forward washing on performance of permeate flux recovery (PFR) were investigated. A two-level fractional factorial design (FFD) was used to design the experiments. The ability of back propagation neural network (BPNN) and radial basis function neural network (RBFNN) in predicting the performance of cleaning-in-place (CIP) of hydrophilic polyethersulfone (PES) membrane were investigated. It is found that BPNN has better ability in predicting the PFR performance than RBFNN. The best architecture of BPNN was a network consisting of 1 hidden layer... 

    Dendritic magnetite decorated by pH-responsive PEGylated starch: A smart multifunctional nanocarrier for the triggered release of anti-cancer drugs

    , Article RSC Advances ; Volume 5, Issue 60 , Jun , 2015 , Pages 48586-48595 ; 20462069 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In the present study, we designed a pH-responsive drug nanocarrier based on polyamidoamine-modified Fe3O4 nanoparticles coated by PEGylated starch-co-poly(acrylic acid). This carrier was used for the controlled release of doxorubicin as an anticancer drug model. The purpose of using the polyethylene glycol moiety is to generate a biostable nanocarrier in blood stream as it has been reported widely in the pharmaceutical literature. The use of a poly(acrylic acid) segment also provided pH-sensitivity to the polymer. Besides, the magnetic nanoparticles facilitate the cancer cell targeting with an external magnetic field located near the tumor site. This carrier was... 

    PEG-co-polyvinyl pyridine coated magnetic mesoporous silica nanoparticles for pH-responsive controlled release of doxorubicin

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 64, Issue 11 , 2015 , Pages 570-577 ; 00914037 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Bennett, C ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    In the present work a pH responsive drug nanocarrier based on magnetic mesoporous silica nanoparticles (MMSN) and polyethylene glycol-co-polyvinyl pyridine (PEG-co-PVP) was prepared. The core-shell nanocarrier was formed due to electrostatic interaction between protonated polyvinyl pyridine and surface modified MMSN with carboxylate groups. This carrier was used for pH-controllable doxorubicin release. The maximum release was occurred at pH 5.5 (pH of endosomes). This carrier was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, UV-Vis spectrophotometer, scanning electron microscope, and high-resolution transmission electron microscope techniques. Also the... 

    Rutting and moisture resistance evaluation of polyethylene wax–modified asphalt mixtures

    , Article Petroleum Science and Technology ; Volume 34, Issue 17-18 , 2016 , Pages 1568-1573 ; 10916466 (ISSN) Nakhaei, M ; Darbandi Olia, A. D ; Akbari Nasrekani, A ; Asadi, P ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    One of the methods newly introduced in pavement technology to address environmental concerns and reduce total gas emission is warm mix asphalt (WMA) technology. In this study, polyethylene wax is used to produce WMA mixtures. Although this technology has several positive features, moisture and rutting resistance of WMA mixtures are always questionable. To evaluate moisture and rutting resistance of polyethylene-modified mixtures, indirect tensile strength and dynamic creep tests were used, respectively. Results indicated that polyethylene has positive effect at low compaction temperature on moisture resistance, and also has negative effect on rutting resistance  

    Electrical bending instability in electrospinning visco-elastic solutions

    , Article Journal of Polymer Science, Part B: Polymer Physics ; Volume 54, Issue 11 , 2016 , Pages 1036-1042 ; 08876266 (ISSN) Shariatpanahi, S. P ; Bonn, D ; Ejtehadi, M. R ; Iraji Zad, A ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    The electrical bending instability in charged liquid jets is the phenomenon determining the process of electrospinning. A model of this phenomenon is lacking however, mostly due to the complicated interplay between the viscosity and elasticity of the solution. To investigate the bending instability, we performed electrospinning experiments with a solution of polyethylene oxide in water/ethanol. Using a fast camera and sensitive multimeter, we deduced an experimental dispersion relation describing the helix pitch length as a function of surface charge. To understand this relation, we developed a theoretical model for the instability for a wide range of visco-elastic materials, from conducting... 

    The effect of chitosan and PEG polymers on stabilization of GF-17 structure: A molecular dynamics study

    , Article Carbohydrate Polymers ; Volume 237 , 2020 Asadzadeh, H ; Moosavi, A ; Arghavani Hadi, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We examine the interactions of chitosan and polyethylene glycol (PEG) with antimicrobial peptide GF-17 to identify a suitable carrier to improve the peptide drug delivery systems. To this end, the molecular dynamics simulations are used to determine the interactions of a typical antimicrobial peptide GF-17 with the chitosan and PEG polymers. The findings indicate the great potential of the peptide to maintain its secondary structure in the adjacent to chitosan polymers. During the interaction with chitosan polymers, the structure of the peptide has smaller fluctuations compared to the PEG polymers. Also, in the presence of both the polymers, the PEG polymers are situated closer to the... 

    Polyoxometalate-supported Pd nanoparticles as efficient catalysts for the Mizoroki-Heck cross-coupling reactions in PEG medium

    , Article Applied Organometallic Chemistry ; Volume 34, Issue 1 , 2020 Bagherzadeh, M ; Hosseini, H ; Salami, R ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    Palladium nanoparticles supported on polyoxometalate as a solid carrier were successfully prepared and evaluated as a heterogeneous nanocatalyst for the Mizoroki-Heck cross-coupling reactions. This supported catalyst was characterized by a set of techniques, including XRD, chemical analysis (ICP-OES), IR spectroscopy, TEM and FE-SEM analyses. Poly (ethylene glycol) was employed as an environmentally friendly solvent for coupling reactions. The various fundamental reaction parameters that influence the efficiency of the reaction and yield of the desired reaction products were optimized. This catalytic system showed good activities and evolve a strategy for achieving five times catalyst and... 

    The stability and surface activity of environmentally responsive surface-modified silica nanoparticles: the importance of hydrophobicity

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 9 , 2020 , Pages 1299-1310 Ghaleh, V.R ; Mohammadi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, the effect of hydrophobicity of environmentally responsive surface-modified silica nanoparticles on the stability and surface activity of the nanoparticles is examined. To this end, n-propyl, n-hexyl, or n-octyl chains and methoxy poly(ethylene glycol) chains at various quantities were coated covalently on the surface of silica nanoparticles to regulate the hydrophobicity of the responsive nanoparticles. Various experimental tools such as stability analysis, interfacial-tension and contact-angle measurements, and emulsion formation were performed to investigate the effect of hydrophobicity. It became evident that the presence of the hydrophobic agents influences considerably... 

    Effects of the preparation conditions on ethylene/vinyl acetate membrane morphology with the use of scanning electron microscopy

    , Article Journal of Applied Polymer Science ; Volume 105, Issue 5 , 2007 , Pages 2683-2688 ; 00218995 (ISSN) Sadeghi, M ; Mousavi, S. A ; Motamed Hashemi, M. Y ; Pourafshari Chenar, M ; Roosta Azad, R ; Sharif University of Technology
    2007
    Abstract
    In this research, the effects of preparation conditions, including the coagulation bath temperature, polymer solution composition, preliminary drying time, and thickness of cast polymeric films, on the morphology of ethylene/vinyl acetate copolymer membranes were investigated with scanning electron microscopy and nitrogen gas permeability tests. Flat sheet membranes were prepared through a thermal-wet phase-inversion method. Scanning electron microscopy pictures showed asymmetric structures for some of the membranes. It was also observed that the porosity of the membranes decreased with an increase in the temperature of the coagulation bath and the solvent evaporation period. When the... 

    Semiconducting layer as an attractive PD detection sensor of XLPE cables

    , Article IEEE Transactions on Dielectrics and Electrical Insulation ; Volume 13, Issue 4 , 2006 , Pages 885-891 ; 10709878 (ISSN) Vakilian, M ; Blackburn, T. R ; James, R. E ; Toan Phung, B ; Sharif University of Technology
    2006
    Abstract
    Online monitoring of high voltage (HV) cross linked polyethylene (XLPE) cables is a major requirement and interest of utilities for reliable operation of underground cables. Although XLPE cables have a relatively reliable insulation system, however since its insulating material is less resistant to partial discharges (PD), the failure risk increases significantly after occurrence of any partial discharge. Therefore sensitive sensors and a reliable detection system are required for an effective cable life management. Due to attenuation effects of semiconducting layers of XLPE cables on high frequency components of partial discharge signal, the detection process is easily distorted with... 

    Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery

    , Article Materials Today Communications ; Volume 27 , 2021 ; 23524928 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Gelatin methacrylate (GelMA) was proved to be a promising bioink for corneal stromal cell delivery. However, GelMA has low mechanical properties which makes it difficult to be suturable and handled for clinical applicattion. In this study, three different ratios of 12.5 % GelMA and 10 % PEGDA were investigated for corneal stromal cells delivery. The mixture containing 75 % GelMA and 25 % PEGDA (75G25P) was found to have reasonable cell viability and suturing strength. Moreover, collagen nanofibers were incorporated into 75G25P hydrogel to improve the mechanical and biomimetic properties of the construct (75G25P-E). A hybrid structure was obtained by injecting the optimized bioink on the... 

    Post-consumer recycled high density polyethylene/polypropylene blend with improved overall performance through modification by impact polypropylene copolymer: morphology, properties and fracture resistance

    , Article Polymer International ; Volume 70, Issue 12 , 2021 , Pages 1701-1716 ; 09598103 (ISSN) Mehrabi Mazidi, M ; Sharifi, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    The effect of an impact polypropylene copolymer (IPC) having excellent stiffness–toughness balance on the microstructure and properties of a blend comprising 80 wt% recycled high density polyethylene (rHDPE) and 20 wt% recycled isotactic polypropylene (rPP) was studied. Morphological observations revealed improved interfacial interactions, a finer dispersion state and a more homogeneous phase morphology upon IPC incorporation into the blend up to 20 wt%. Flexural modulus, flexural strength, tensile strength and tensile ductility were steadily increased with IPC loading, and exhibited 13%, 14%, 35% and 520% improvement at 20 wt% IPC. A monotonic rise in Izod impact energy, accompanied by a... 

    Studies on the properties and structure of electron-beam crosslinked low-density polyethylene/poly[ethylene-co-(vinyl acetate)] blends

    , Article Polymer International ; Volume 54, Issue 4 , 2005 , Pages 686-691 ; 09598103 (ISSN) Dadbin, S ; Frounchi, M ; Sabet, M ; Sharif University of Technology
    2005
    Abstract
    Blends of low-density polyethylene (LDPE) and poly[ethylene-co-(vinyl acetate)] (PEVA), crosslinked by electron-beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB-exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures,... 

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Abstract
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell...