Loading...
Search for: pore-size
0.014 seconds

    Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin

    , Article Chemosphere ; Volume 275 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Haris, M. H ; Bahi, A ; Rezakazemi, M ; Molavi, H ; Ko, F ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, a magnetic core-shell metal-organic framework (Fe3O4@PAA@UiO-66-NH2) nanocomposite was synthesized by a facile step-by-step self-assembly technique and used for selective adsorption of the anti-cancer Quercetin (QCT) drug. The synthesized nanocomposite was well characterized using FTIR, XRD, BET, FESEM, and TEM techniques. The adsorption kinetics and isotherms of the magnetic nanocomposites for QCT were investigated in detail at different initial concentrations and temperatures. It was found that the experimental adsorption kinetic and isotherm data were precisely explained by the pseudo-second-order kinetic and Langmuir isotherm models. Moreover, the selective... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    A single layer deposition of Li-doped mesoporous TiO2beads for low-cost and efficient dye-sensitized solar cells

    , Article New Journal of Chemistry ; Volume 45, Issue 5 , 2021 , Pages 2470-2477 ; 11440546 (ISSN) Golvari, P ; Nouri, E ; Mohsenzadegan, N ; Mohammadi, M. R ; Martinez Chapa, S. O ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Herein, we report a new strategy for improving the efficiency and reducing the fabrication cost of dye-sensitized solar cells (DSCs) by elimination of the three- or four-fold layer deposition of TiO2. This is performed by replacing a single layer deposition of mesoporous TiO2 beads, with sub-micrometer size, high surface area and tunable pore size, synthesized by a combination of sol-gel and solvothermal methods. Furthermore, superior electronic properties gained by a reduction in electronic trap states are achieved through doping of pristine TiO2 beads with lithium. The beads have a spherical shape with monodispersed texture consisting of anatase-TiO2 nanocrystals and ultra-fine pores. The... 

    Fabrication of a novel 3D scaffold for cartilage tissue repair: In-vitro and in-vivo study

    , Article Materials Science and Engineering C ; Volume 128 , 2021 ; 09284931 (ISSN) Haghighi, P ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Self-repairing is not an advanced ability of articular cartilage. Tissue engineering has provided a novel way for reconstructing cartilage using natural polymers because of their biocompatibility and bio-functionality. The purpose of cartilage tissue engineering is to design a scaffold with proper pore structure and similar biological and mechanical properties to the native tissue. In this study, porous scaffolds prepared from gelatin, chitosan and silk fibroin were blended with varying ratios. Between the blends of chitosan (C), gelatin (G) and silk fibroin (S), the scaffold with the weight per volume ratio of 2:2:3 (w/v) showed the most favorable and higher certain properties than the... 

    Synthesis of SiOC/Al2O3 nano/macro composites through PDC method; investigation of potentials as layers of a packed bed reactor membrane

    , Article Ceramics International ; Volume 46, Issue 11 , 2020 , Pages 19000-19007 Abdollahi, S ; Paryab, A ; Rahmani, S ; Akbari, M ; Sarpoolaky, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Thanks to a wide range of pore sizes by nano/macro composites of SiOC/Al2O3, such composites can serve as different layers of the structure of Packed Bed Reactor Membranes (PBRM). In the present study, the Polymer-Derived Ceramics method (PDC) has been used to synthesize nano/macro structures. Firstly, the effect of toluene as an extra carbon source on structure and microstructure of SiOC glass-ceramics was evaluated, such that, 4% (Vol) toluene was recognized as the proper amount to facilitate the synthesis of β-SiC at 1300 °C proved by XRD, Raman spectroscopy, and HR-TEM. Moreover, the presence of micro/meso-porosities was assessed by BET and TEM, indicating the capability of SiOC to serve... 

    The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method

    , Article Ceramics International ; 2020 Abdollahi, S ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase.... 

    Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66

    , Article Journal of Environmental Management ; Volume 274 , 2020 Ahmadijokani, F ; Ahmadipouya, S ; Molavi, H ; Rezakazemi, M ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Academic Press  2020
    Abstract
    This work reports on the potential application of UiO-66 in gas sweetening and its structural stability against water, air, dimethylformamide (DMF), and chloroform. The UiO-66 nanoparticles were solvothermally synthesized at different scales and activated via solvent exchange technique using chloroform, methanol, and ethanol. Thus prepared and aged MOFs were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and nitrogen adsorption-desorption analysis. The chloroform-activated MOF showed the largest surface area among all activation solvents, and presented high uptakes of 8.8 and 4.3 mmol/g for CO2... 

    Effect of graphene oxide on morphological and structural properties of graphene reinforced novolac-derived carbon aerogels: A modified Quasi-Percolation Model

    , Article Ceramics International ; Volume 46, Issue 8 , 2020 , Pages 11179-11188 Alizadeh, O ; Madaah Hosseini, H. M ; Pourjavadi, A ; Bahramian, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Graphene reinforced polymer derived carbon (carbon/graphene) aerogels were synthesized by carbonization of novolac/graphene oxide aerogels. Novolac/graphene oxide aerogels were synthesized using solvent-saturated-vapor-atmosphere technique. To this aim, 20 wt% solution of novolac resin with 0, 2, and 5 wt% graphene oxide in 2-propanol were made and were cured in an autoclave. Wet aerogels were dried in air and were carbonized at 800 °C in nitrogen atmosphere. Eliminating the time-consuming methods of drying like supercritical and freeze drying is one of the advantages of this method of synthesis of organic aerogles. Fourier transform infrared spectroscopy, field emission scanning electron... 

    Light olefin production on the Co-Ni catalyst: Calcination conditions, and modeling and optimization of the process conditions by a statistical method

    , Article New Journal of Chemistry ; Volume 44, Issue 18 , 2020 , Pages 7467-7483 Arsalanfar, M ; Akbari, M ; Mirzaei, N ; Abdouss, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The present work is comprised of two main parts. In part 1 the Co-Ni/γ-Al2O3 catalyst was prepared using a sol-gel procedure. Then the effect of calcination variables including the calcination temperature and time on the catalytic performance for production of light olefins was investigated and optimized. The obtained results have shown that the catalyst which was calcined at 550 °C for 6 h has revealed the better catalytic performance for production of light olefins. In part 2 the effect of process conditions including the reaction temperature, H2/CO feed ratio and total reaction pressure on the catalytic performance (CO conversion%, (C2-C4) selectivity% and C5+ selectivity%) was... 

    Smart drug delivery: Capping strategies for mesoporous silica nanoparticles

    , Article Microporous and Mesoporous Materials ; Volume 299 , 2020 Bakhshian Nik, A ; Zare, H ; Razavi, S ; Mohammadi, H ; Torab Ahmadi, P ; Yazdani, N ; Bayandori, M ; Rabiee, N ; Izadi Mobarakeh, J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Systematic delivery of therapeutic agents to specific sites, with a stimulus-responsive drug release profile is currently a rapidly growing area. Mesoporous silica nanoparticles (MSNs) are the useful platforms as drug/gene delivery systems due to their unique properties including the ability to control the pore size, high porosity, and morphology, which can directly affect the mechanism and profile of drug release. The appropriate fabrication strategy can tailor the particle shape and size, leading to enhanced delivery and release mechanisms. The MSN surface can be modified by using either organic or inorganic molecules to induce smart and site-specific drug delivery and release.... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Ion transport through graphene oxide fibers as promising candidate for bblue energy harvesting

    , Article Carbon ; Volume 165 , 2020 , Pages 267-274 Ghanbari, H ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanostructured graphene based membranes demonstrated excellent capabilities in various applications in nanofiltration and energy conversion due to unique atomically smooth surfaces and adjustable pore size or interlayers spacing at Angstrom scales. There are some reports on the osmotic power generation using physical confinements and electrostatic interactions between ions and GO membranes. However, the results indicated insufficient power densities (˂1 W/m2) can be achieved because of swelling of interlayer spacing of the GO membranes upon exposure to aqueous solutions which results in reducing the influence of confinement on ionic motilities. Here, the GO fibers is presented as one... 

    Extraction of hydroxyapatite nanostructures from marine wastes for the fabrication of biopolymer-based porous scaffolds

    , Article Marine Drugs ; Volume 18, Issue 1 , 2020 Gheysari, H ; Mohandes, F ; Mazaheri, M ; Dolatyar, B ; Askari, M ; Simchi, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Three-dimensional porous nanocomposites consisting of gelatin-carboxymethylcellulose (CMC) cross-linked by carboxylic acids biopolymers and monophasic hydroxyapatite (HA) nanostructures were fabricated by lyophilization, for soft-bone-tissue engineering. The bioactive ceramic nanostructures were prepared by a novel wet-chemical and low-temperature procedure from marine wastes containing calcium carbonates. The effect of surface-active molecules, including sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB), on the morphology of HA nanostructures is shown. It is demonstrated that highly bioactive and monophasic HA nanorods with an aspect ratio > 10 can be synthesized in... 

    Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies

    , Article Journal of Industrial and Engineering Chemistry ; Volume 81 , 2020 , Pages 405-414 Hasanzadeh, M ; Simchi, A ; Shahriyari Far, H ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    Activated carbon (AC) is an inert adsorbent material that has widely been used in water treatment or removing of environmental pollutants from water. In order to improve the adsorption of AC, which highly depends on its pore size and surface area, we prepared highly porous adsorbent composites of activated carbon (AC)/chromium-based MOF (MIL-101(Cr)). The composite has a high specific surface area of 2440 m2 g−1 and total pore volume of 1.27 cm3 g−1. To show the efficiency of the composite as an adsorbent, the removal kinetics of anionic dyes (Direct Red 31 and Acid Blue 92) from aqueous solutions dependent on the amount of composite, adsorption time, concentration of dye and pH is... 

    Enhancing water desalination in graphene-based membranes via an oscillating electric field

    , Article Desalination ; Volume 495 , December , 2020 Mortazavi, V ; Moosavi, A ; Nouri Borujerdi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Water desalination methods on the basis of newly developed graphene-based membrane have been introduced as a more efficient alternative for the conventional water purification technologies such as classical thermal desalination and reverse osmosis (RO). However, the increase of water permeation rate and ion rejection are still the main subjects in this field. In this study, a new method based on using oscillating electric field is proposed to improve the performance of nanoporous graphene. The effects of the amplitude and oscillation frequency of the electric field and the pore size of the membrane on the water permeation and salt rejection are studied by conducting molecular dynamics... 

    The geometrical characteristics of nickel-based metal organic framework on its entrapment capability

    , Article Journal of Chromatography A ; Volume 1610 , 2020 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, a three dimensional nickel–based metal organic framework (MOF) was synthesized via solvothermal and room temperature protocols. In order to study the effects of the synthesis conditions on the physical properties such as pore sizes and shapes of the prepared MOFs, their extraction capabilities were examined. Both MOFs were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and thermogravimetric analyses. Brilliant properties such as porous structure, high surface area and considerable thermal stability make them reasonable candidates to be employed as efficient extractive phases. The efficiency of the... 

    Glucose cross-linked hydrogels conjugate HA nanorods as bone scaffolds: Green synthesis, characterization and in vitro studies

    , Article Materials Chemistry and Physics ; Volume 242 , 2020 Mazaheri Karvandian, F ; Shafiei, N ; Mohandes, F ; Dolatyar, B ; Zandi, N ; Zeynali, B ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the expanding field of tissue engineering (TE), improvement of biodegradability and osteoconductivity of biomaterials are required. The use of non-toxic reagents during manufacturing processes is also necessary to decrease toxicity and increase cell viability in vivo. Herein, we present a novel approach to prepare hydroxyapatite (HA) nanorods from sea bio-wastes through a green and eco-friendly wet-chemical processing for bone TE. Highly porous natural polymer-ceramic nanocomposites made of HA, gelatin (Ge) and carboxymethyl cellulose (CMC) hydrogels are then introduced. It was found that cross-linking of the hydrogel matrix by glucose as a green reagent affected all characteristics of... 

    Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery

    , Article Materials Science and Engineering C ; Volume 113 , 2020 Rafiei, M ; Jooybar, E ; Abdekhodaie, M. J ; Alvi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, a three-dimensional tablet-like porous scaffold, comprising core-shell fibers to host proteins inside the core, was developed. The fabrication method involved the novel combination of coaxial and wet electrospinning in a single setting. Poly (ε-caprolactone) was chosen as the based polymer and bovine serum albumin was used as a model protein. These 3D tablet-like scaffolds exhibited adequate porosity and suitable pore size for cell culture and cell infiltration, in addition to appropriate mechanical properties for cartilage tissue engineering. The effects of different parameters on the behavior of the system have been studied and the 3D scaffold based on the core-shell fiber... 

    Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology

    , Article Journal of Polymer Research ; Volume 26, Issue 9 , 2019 ; 10229760 (ISSN) Ganj, M ; Asadollahi, M ; Mousavi, S. A ; Bastani, D ; Aghaeifard, F ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this research, polysulfone (PSf) ultrafiltration (UF) membranes were prepared by a phase inversion method. Surface modification of the PSf membranes was carried out via grafting of acrylic acid as a hydrophilic monomer by free radical graft polymerization initiated by redox reaction. A central composite design (CCD) of response surface methodology (RSM) was applied to design the experiments. The process variables were acrylic acid concentration (CAA), redox system contact time (T1), and acrylic acid polymerization time (T2), while the contact angle (CA), pure water flux (PWF), and flux recovery ratio (FRR) were considered as the responses. Analysis of variance (ANOVA) demonstrated that... 

    Nanorod carbon nitride as a carbo catalyst for selective oxidation of hydrogen sulfide to sulfur

    , Article Journal of Hazardous Materials ; Volume 364 , 2019 , Pages 218-226 ; 03043894 (ISSN) Kamali, F ; Eskandari, M. M ; Rashidi, A ; Baghalha, M ; Hassanisadi, M ; Hamzehlouyan, T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Two-dimensional mesoporous carbon nitride and its highly efficient nanorod framework were prepared via hard-templating method. The obtained materials were fully characterized. The results showed that the samples structural ordering and morphology were similar to those of the parent silica templates; they had large pore volumes as well as high surface area structures. Carbon nitride carbocatalysts were used for H2S selective oxidation. The catalytic tests were carried out at 190, 210 and 230 °C in a fixed bed reactor. The obtained selectivity values for mesoporous carbon nitride rod and mesoporous carbon nitride toward elemental sulfur at 190 °C were 88.8% and 83%, respectively. Both samples...