Loading...
Search for: pore-size
0.006 seconds

    Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene fluoride) membranes for solute separation

    , Article Separation and Purification Technology ; Volume 108 , 2013 , Pages 196-204 ; 13835866 (ISSN) Savoji, H ; Rana, D ; Matsuura, T ; Tabe, S ; Feng, C ; Sharif University of Technology
    2013
    Abstract
    Nanofiber membranes were fabricated by electrospinning poly(vinylidene fluoride). The electrospun nanofiber membranes were further modified by grafting of acrylic acid (AA) and methacrylic acid (MAA) over the surfaces of the membranes. Plasma AA graft was attempted only, and the results indicated the partial membrane pore filling with grafted AA. For MAA grafting, chemically induced polymerization using benzoyl peroxide and hydrogen peroxide was attempted. The combination of plasma and chemically induced MAA graft polymerization was also attempted. The membranes were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and static contact angle (SCA)... 

    MAO-derived hydroxyapatite-TiO 2 nanostructured bio-ceramic films on titanium

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3407-3412 ; 00255408 (ISSN) Abbasi, S ; Golestani Fard, F ; Rezaie, H. R ; Mirhosseini, S. M. M ; Ziaee, A ; Sharif University of Technology
    2012
    Abstract
    Micro Arc Oxidation (MAO) process was utilized to fabricate nano bioceramic TiO 2-hydroxyapatite coatings on titanium substrates. Samples were produced in electrolytes contained 1 g/l β-glycerophosphate and 5, 10 and 15 g/l calcium acetate for 3, 6 and 10 min at 350 V. The techniques including XRD, XPS, SEM, FESEM and EDX were employed to study the effect of processing parameters. Hydroxyapatite, anatase, α-tri calcium phosphate and calcium titanate phases as well as 30-60 nm-size crystals were detected in the coating layer. It was also observed that the pore volume would increase by increasing the electrolyte concentration. The growth time was also found to influence the total pore volume.... 

    Pore network modeling of nanoporous ceramic membrane for hydrogen separation

    , Article Separation Science and Technology ; Volume 45, Issue 14 , Sep , 2010 , Pages 2028-2038 ; 01496395 (ISSN) Moeini, M ; Farhadi, F ; Sharif University of Technology
    2010
    Abstract
    Pore network modeling of porous media has this advantage that can consider the pore structure incorporating any desired details, but it has not been studied sufficiently. In addition, most studies are limited to mathematical modeling only which need validation. In the present study, this approach was applied to hydrogen separation from syngas by nanoporous ceramic membrane to predict the membrane permeance theoretically based on its pore structure. Gas transport through nanoporous membrane was modeled with the aim of a 2D network model. A dusty gas model was used for gas transport in the individual pores. Model validation showed that the model predictions are in good agreement with the... 

    Coke deposition mechanism on the pores of a commercial Pt-Re/γ- Al2O3 naphtha reforming catalyst

    , Article Fuel Processing Technology ; Volume 91, Issue 7 , 2010 , Pages 714-722 ; 03783820 (ISSN) Baghalha, M ; Mohammadi, M ; Ghorbanpour, A ; Sharif University of Technology
    2010
    Abstract
    Coke deposition mechanism on a commercial Pt-Re/γ-Al 2O3 naphtha reforming catalyst was studied. A used catalyst that was in industrial reforming operation for 28 months, as well as the fresh catalyst of the unit were characterized using XRD, XRF, and nitrogen adsorption/desorption analyses. Carbon and sulfur contents of the fresh and the used catalysts were determined using Leco combustion analyzer. The pore size distributions (PSD) of the fresh and the used reforming catalysts were determined using BJH and Comparison Plot methods. The Comparison Plot method produced the most reasonable PSDs for the catalysts. Through comparison of the PSDs of the fresh and the used catalysts, it was... 

    Statistical model for dispersion in a 2D glass micromodel

    , Article SPE Journal ; Volume 15, Issue 2 , 2010 , Pages 301-312 ; 1086055X (ISSN) Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Vossoughi, S ; Sharif University of Technology
    2010
    Abstract
    Microscopic visualization of a porous medium can provide valuable information to enhance understanding of pore-scale transport phenomena. In this work, a novel and unique approach is provided to combine experimentally measured pore-size distribution with theoretical statistical analysis to predict longitudinal and transverse dispersion coefficients. The approach presented can be easily extended to predict other fluid-flow parameters through porous media, such as permeability, and capillary pressure. Here, a micromodel is considered as a porous medium. The grains and pores of the micromodel are nonuniform in size, shape, and distribution. The pore-size distribution, as well as pore-length... 

    Dead-end microfiltration of rough nonalcoholic beer by different polymeric membranes

    , Article Journal of the American Society of Brewing Chemists ; Volume 68, Issue 2 , 2010 , Pages 83-88 ; 03610470 (ISSN) Yazdanshenas, M ; Tabatabaei Nejad, S. A. R ; Soltanieh, M ; Tavakkoli, A ; Babaluo, A. A ; Fillaudeau, L ; Sharif University of Technology
    2010
    Abstract
    Clarification of rough nonalcoholic beer using microfiltration as an alternative to conventional filtration with filter aids presents scientific and technical challenges for the brewing industry. An experimental pilot plant was used to evaluate the permeability and selectivity of polymeric membranes in the clarification process. Cellulose acetate (CA) with pore sizes of 0.2, 0.45, 0.8, and 1.2 μm, together with cellulose nitrate (CN), nylon (NY), and polytetrafluoroethylene (PTFE) with a pore size of 0.45 μm, were used at transmembrane pressures (TMP) of 1.0 and 2.0 bar. The data corroborated that the flux values of the CA, CN, and NY membranes were almost the same and reduced drastically,... 

    Molecular simulation of protein dynamics in nanopores. II. Diffusion

    , Article Journal of Chemical Physics ; Volume 130, Issue 8 , 2009 ; 00219606 (ISSN) Javidpour, L ; Tabar, M.R.R ; Sahimi, M ; Sharif University of Technology
    2009
    Abstract
    A novel combination of discontinuous molecular dynamics and the Langevin equation, together with an intermediate-resolution model of proteins, is used to carry out long (several microsecond) simulations in order to study transport of proteins in nanopores. We simulated single-domain proteins with the α-helical native structure. Both attractive and repulsive interaction potentials between the proteins and the pores' walls are considered. The diffusivity D of the proteins is computed not only under the bulk conditions but also as a function of their "length" (the number of the amino-acid groups), temperature T, pore size, and interaction potentials with the walls. Compared with the... 

    Transport Property Estimation of Non-Uniform Porous Media

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 28, Issue 2 , 2009 , Pages 29-42 ; 10219986 (ISSN) Ghazanfari, M. H ; Rashtchian, D ; Kharrat, R ; Vossoughi, S ; Sharif University of Technology
    2009
    Abstract
    In this work a glass micromodel which its grains and pores are non-uniform in size shape and distribution is considered as porous medium. A two-dimensional random network modė, of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using image analysis technique. Statically derived expressions have been used for prediction of macroscopic properties of porous model including: dispersion coefficients, permeability-porosity ratio and capillary pressure. The results confirmed that predicted transport properties are in good agreement with the... 

    Molecular simulation of protein dynamics in nanopores. I. Stability and folding

    , Article Journal of Chemical Physics ; Volume 128, Issue 11 , 2008 ; 00219606 (ISSN) Javidpour, L ; Rahimi Tabar, M. R ; Sahimi, M ; Sharif University of Technology
    2008
    Abstract
    Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of α -de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature Tf and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with Tf decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's... 

    The application of corrugated parallel bundle model to immobilized cells in porous microcapsule membranes

    , Article Journal of Membrane Science ; Volume 311, Issue 1-2 , 2008 , Pages 159-164 ; 03767388 (ISSN) Biria, D ; Zarrabi, A ; Khosravi, A ; Sharif University of Technology
    2008
    Abstract
    To describe immobilized cells in porous microcapsule membranes with straight pores, a novel model called corrugated parallel bundle model (CPBM) was utilized. In this model, a network was developed with 10 main pores each composing 10 pore elements. Cell growth kinetic in the network was examined using non-structural models. Effectiveness factor and pore plugging time were calculated by solving reaction-diffusion equation set via finite difference method. The findings revealed that diffusion coefficient for lower order reactions will create a lesser impact on the reduction of effectiveness factor. These findings also indicated that the use of such supporting carrier for cell immobilization... 

    Statistical model of dispersion in a 2-D glass micromodel

    , Article 16th SPE/DOE Improved Oil Recovery Symposium 2008 - ""IOR: Now More Than Ever."", Tulsa, OK, 19 April 2008 through 23 April 2008 ; Volume 2 , 2008 , Pages 527-539 ; 9781605601656 (ISBN) Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Vossoughi, S ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2008
    Abstract
    Microscopic Visualization of the porous media can provide valuable information to enhance understanding of pore-scale transport phenomena. Here, a micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. The pore size distribution as well as pore length distribution was extracted by applying an image analysis technique. A two-dimensional random network model of the micromodel has been constructed which the nonuniformity is considered by assigning measured distribution functions. The random particle method was applied for correlating and predicting dispersion coefficients based on probabilistic approaches. Statistical derivations... 

    Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25°C

    , Article Journal of Natural Gas Chemistry ; Volume 16, Issue 4 , December , 2007 , Pages 415-422 ; 10039953 (ISSN) Salehi, E ; Taghikhani, V ; Ghotbi, C ; Nemati Lay, E ; Shojaei, A ; Sharif University of Technology
    2007
    Abstract
    A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25 °C. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained... 

    Capillary pressure estimation using statistical pore size functions

    , Article Chemical Engineering and Technology ; Volume 30, Issue 7 , 2007 , Pages 862-869 ; 09307516 (ISSN) Ghazanfari, M. H ; Rashtchian, D ; Kharrat, R ; Vossoughi, S ; Sharif University of Technology
    2007
    Abstract
    Capillary pressure curves, which have been employed for a long period of time by researchers interested in pore size distribution, are commonly obtained from experimental measurements. The dynamic capillary pressure that influences the flow is affected by many factors including the pore size characteristics and pore scale dynamics. Hence, it is important to investigate the variation of the estimated pore size distribution with capillary number. In this study, a glass type micromodel is considered as the porous media sample. A parametric probability density function is proposed to express the pore size distribution of the porous model, which is also measured using an image analysis technique.... 

    Highly porous TiO2 nanofibres with a fractal structure

    , Article Nanotechnology ; Volume 17, Issue 2 , 2006 , Pages 520-525 ; 09574484 (ISSN) Aminian, M. Kh ; Taghavinia, N ; Iraji Zad, A ; Mahdavi, S. M ; Chavoshi, M ; Ahmadian, S ; Sharif University of Technology
    2006
    Abstract
    TiO2 nanofibres were prepared using a templating method with tetraisopropylorthotitanate (TiPT) as a precursor. The preparation comprises liquid phase deposition on cellulose fibres followed by thermal removal of the cellulose template. The obtained TiO2 fibrous substance consists of micron-size fibres with a microstructure of nanofibres. It was demonstrated that nanofibres are basically formed through the aggregation of TiO2 nanoparticles and nanorods into chain structures during the thermal treatment process. The measured surface area of the TiO2 fibres was about 250 m2 g-1. It was shown that the pore size distribution is multi-scale and a fractal morphology was demonstrated with two... 

    Capillary pressure estimation of porous media using statistical pore size function

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Ghazanfari, M. H ; Rashtchian, D ; Kharrat, R ; Vossoughi, S ; Khodabakhsh, M ; Taheri, S ; Sharif University of Technology
    2006
    Abstract
    Real porous media even though seemingly homogenous and isotropic are most often nonuniform, and the nonuniformity may affect the macroscopic properties of porous media such as permeability, capillary pressure which is a result of the tortuous and circuitous nature of the flow paths in medium. In this study a glass type micromodel is considered as a porous media sample. A four parametric probability density function are used to express pore throat size, pore body size and pores length distributions which are measured using image analysis technique of porous model. The statistical models parameters are calculated by fitting the statistical model to the measured data of pore throat pore body... 

    Experimental Performance Analysis of Different Drill-in Fluids in Order to Reduce Formation Damage in Reservoir Sections

    , M.Sc. Thesis Sharif University of Technology Masoomi Azandaryani, Milad (Author) ; Goodarznia, Iraj (Supervisor)
    Abstract
    Formation damage is defined as any process that reduses the reservoir permeability relative to its normal state. Two major causes of this problem are filtrate and solid invasion into the pore spaces of reservoir rock.Therefore, the drilling fluid used for drilling the reservoir sections should prevent such a problem as much as possible.The goal of this study is to optimize the weighting additive particle size distribution to prevent permeability damage in one of the southern Iranian oil fields. By analizing the capillary pressure data of core samples, it seems that fracture presence in rock matrix leads to poor quality of mudcake, resulting peremabilty reduction in near wellbore region.... 

    Synthesis of Cationic Mesoporous Silica Nanoparticles as a Carrier for the Deliveryof Nucleic Acids

    , M.Sc. Thesis Sharif University of Technology Kermanshah, Leyla (Author) ; Vosoughi, Manouchehr (Supervisor) ; Arpanaei, Ayyoob (Supervisor) ; Javadi, Hamid Reza (Co-Advisor)
    Abstract
    Mesoporous silica nanoparticles (MSNP) have attracted lots of attentions because of their particular characteristics. Physical characteristics such as structure, morphology, porosity, and size of these nanoparticles have strong impact on their function and it can be conceived a wide range of applications for them by manipulating these characteristics. In this research, monodispersed MSNPs with a controllable size in the range of 50-130 nm and pore size in the range of 4-24 nm were synthesized and positively functionalized in order to develop a carrier for the delivery of nucleic acids (siRNA and pDNA). The MSNPs were synthesized by the template removing method.In this method, sodium... 

    Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism

    , Article Journal of Membrane Science ; Vol. 435, issue , May , 2013 , p. 155-164 ; ISSN: 3767388 Bashtani, F ; Ayatollahi, S ; Habibi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Particle capture at porous media in cross-flow microfiltration is studied to investigate permeability reduction as a function of membrane pore size and particle size distribution. A new model in pore scale and its pertinent mathematical expressions, which consider pore and particle size distribution, are provided. Permeability reduction of the membrane because of size exclusion during particulate suspension flow was predicted using the developed model. It is assumed that the size exclusion is the dominant mechanism of particle retention causes pore blocking and permeability reduction in the porous media.The exact analytical solution of the stochastic model for size exclusion is used to... 

    Investigation of membrane preparation condition effect on the PSD and porosity of the membranes using a novel image processing technique

    , Article Journal of Applied Polymer Science ; Volume 131, Issue 4 , 15 February , 2014 ; ISSN: 00218995 Sharak, A. Z ; Samimi, A ; Mousavi, S. A ; Bozarjamhari, R. B ; Sharif University of Technology
    Abstract
    A totally computerized image processing program package is developed to analyze the SEM images of membrane surface and cross-section. Pore size distribution and porosity of the fabricated membranes are determined using the proposed image processing procedure. Furthermore, effect of coagulation bath temperature on the morphology and mechanical properties (such as tensile strength, strain break, tensile energy absorbent, and tensile stiffness) of Polysulfone (PSf) membranes are investigated. The results reveal that the mechanical properties are higher when N-methyl-2-pyrrolidone (NMP) is used as solvent. Also, an increase in the coagulation bath temperature caused a monotonous increase in the... 

    Experimental investigation of operating conditions for preparation of PVA-PEG blend membranes using supercritical CO2

    , Article Journal of Supercritical Fluids ; Vol. 95 , November , 2014 , pp. 603-609 ; ISSN: 08968446 Taji, S ; Nejad-Sadeghi, M ; Goodarznia, I ; Sharif University of Technology
    Abstract
    Poly(vinyl alcohol)-polyethylene glycol, PVA-PEG, blended membrane were prepared using supercritical fluid assisted phase-inversion method, in which scCO2 was used as the anti-solvent. Poly(vinyl alcohol) was utilized as the main polymer, polyethylene glycol as the additive, and dimethyl sulfoxide (DMSO) as the solvent of these polymers. Taguchi method was used to investigate the effect of some operating parameters on the morphology of the membranes. The L16 orthogonal array was selected under the following conditions: pressure (100, 135, 165 and 200 bar), temperature (40, 45, 50 and 55°C) and PEG weight percent (0, 0.33, 0.66, and 1%). Total polymer concentration of solutions in all...