Loading...
Search for: porous-materials
0.008 seconds
Total 409 records

    DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials

    , Article Advances in Water Resources ; Volume 146 , 2020 Rabbani, A ; Babaei, M ; Shams, R ; Wang, Y. D ; Chung, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    DeePore2 is a deep learning workflow for rapid estimation of a wide range of porous material properties based on the binarized micro–tomography images. By combining naturally occurring porous textures we generated 17,700 semi–real 3–D micro–structures of porous geo–materials with size of 2563 voxels and 30 physical properties of each sample are calculated using physical simulations on the corresponding pore network models. Next, a designed feed–forward convolutional neural network (CNN) is trained based on the dataset to estimate several morphological, hydraulic, electrical, and mechanical characteristics of the porous material in a fraction of a second. In order to fine–tune the CNN design,... 

    Analytical Solution to Partial Differential Equations Derived from Thermo-Hydro-Mechanical Analysis

    , M.Sc. Thesis Sharif University of Technology Yazdani, Davood (Author) ; Pak, Ali (Supervisor)
    Abstract
    In this research an analytical and semi analytical solution to the differential eqautions derived from coupled analysis of heat transfer, moisture transfer and solid deformation in porous materials is presented. In first section, differential equations derived from Hydro-mechanical analysis of an unsaturated soil layer with limited thickness was considered and it is assumed that pore air pressure is equal to atmospheric pressure. To solve the system of equations laplace transform is used.In second section, the effect of daily changes in temperature on transient heat and moisture transfer in semi infinite layer is studied in three dimension. Energy conservation equation and pore liquid mass... 

    Hierarchical Multi-scale Analysis using Nonlinear Finite Element & its Application to Porous Media

    , M.Sc. Thesis Sharif University of Technology Asgharzadeh, Mohammad Ali (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Porous materials, with diverse applications in engineering branches, are categorized as multi-scale. A multi-scale material is one which shows different structure and/or behavior in two or more different length scales. There are physical models which can calculate the macroscopic properties of such materials by using both the properties and volume fractions of the ingredients. However, the number of such theories which can handle problems in the fields of elasticity and hydrodynamics is much less; the fields in which the tensor orders of the properties are more than one. Fortunately, in recent years, a new method named "Computational Multi-scale Homogenization" has been offered to homogenize... 

    Lattice Boltzmann method on quadtree grids for simulating fluid flow through porous media: A new automatic algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 392, issue. 20 , May , 2013 , p. 4772-4786 ; ISSN: 03784371 Foroughi, S ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    During the past two decades, the lattice Boltzmann (LB) method has been introduced as a class of computational fluid dynamic methods for fluid flow simulations. In this method, instead of solving the Navier Stocks equation, the Boltzmann equation is solved to simulate the flow of a fluid. This method was originally developed based on uniform grids. However, in order to model complex geometries such as porous media, it can be very slow in comparison with other techniques such as finite differences and finite elements. To eliminate this limitation, a number of studies have aimed to formulate the lattice Boltzmann on the unstructured grids. This paper deals with simulating fluid flow through a... 

    Non-equilibrium model of gravity drainage in a single block

    , Article Journal of Porous Media ; Vol. 16, issue. 6 , 2013 , p. 559-571 ; ISSN: 1091028X Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    This work concerns with developing a non-equilibrium model of gravity drainage in a single block. The proposed model which considers both non-equilibrium effects of capillary pressure and relative permeabilities is used for prediction of oil recovery by gravity drainage from a single block. Close agreement observed between the model results and experimental data disclosed that the non-equilibrium assumption is completely reliable for modeling of gravity drainage. The results revealed that when the characteristic time of the saturation variation is comparable with the time required to establish capillary equilibrium, the non-equilibrium effects in gravity drainage must be considered. The... 

    A new model based on multilayer kinetic adsorption mechanism for asphaltenes adsorption in porous media during dynamic condition

    , Article Fluid Phase Equilibria ; Vol. 375, issue , 2014 , Pages 236-245 ; ISSN: 03783812 Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    Abstract
    In this work, a new model based on multilayer kinetic adsorption mechanism has been proposed to account asphaltene adsorption in porous media under dynamic condition and the model was verified using experimental data obtained in this work and also with those reported in the literature. In the proposed model two steps are considered for asphaltene adsorption. The first step is taken as adsorption of asphaltenes on the surface of the porous media and the second step is taken as adsorption of asphaltenes on the asphaltenes already adsorbed on the porous media. The Crank-Nicholson method, central difference in space and trapezoidal rule in time, giving second order convergence in time was... 

    Investigation of membrane preparation condition effect on the PSD and porosity of the membranes using a novel image processing technique

    , Article Journal of Applied Polymer Science ; Volume 131, Issue 4 , 15 February , 2014 ; ISSN: 00218995 Sharak, A. Z ; Samimi, A ; Mousavi, S. A ; Bozarjamhari, R. B ; Sharif University of Technology
    Abstract
    A totally computerized image processing program package is developed to analyze the SEM images of membrane surface and cross-section. Pore size distribution and porosity of the fabricated membranes are determined using the proposed image processing procedure. Furthermore, effect of coagulation bath temperature on the morphology and mechanical properties (such as tensile strength, strain break, tensile energy absorbent, and tensile stiffness) of Polysulfone (PSf) membranes are investigated. The results reveal that the mechanical properties are higher when N-methyl-2-pyrrolidone (NMP) is used as solvent. Also, an increase in the coagulation bath temperature caused a monotonous increase in the... 

    Numerical study on water distribution in different layers of direct methanol fuel cells

    , Article Journal of the Electrochemical Society ; Vol. 161, issue. 8 , 2014 , pp. E3110-E3124 ; ISSN: 00134651 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, isothermal model is presented to investigate the water transport characteristic and water distribution in a direct methanol fuel cell (DMFC) with emphasis on exploring the water distribution in different layers of DMFC. The liquid-gas two-phase mass transport in the porous anode and cathode is formulated based on multi-fluid model in porous media and water and methanol crossover through the membrane are considered with the effect of diffusion, electro-osmotic drag, and convection. The modeling results agree well with the three different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine... 

    3D modeling of cohesive crack growth in partially saturated porous media: A parametric study

    , Article Engineering Fracture Mechanics ; Vol. 124-125, issue , 2014 , pp. 272-286 ; ISSN: 00137944 Barani, O. R ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, the 3D cohesive crack propagation is presented in partially saturated porous media. The double-nodded zero-thickness cohesive interface elements are employed to capture the mixed mode fracture behavior. In order to describe the behavior of fractured media, two balance equations are applied similar to those employed for the mixture of solid-fluid phase in semi-saturated media, including: the momentum balance of fractured media, and the balance of fluid mass within the fracture. Crack permeability is modified based on the data obtained from experimental results to consider the roughness of fracture walls effect  

    LBM simulation of electro-osmotic flow (EOF) in nano/micro scales porous media with an inclusive parameters study

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 7 , November , 2014 ; ISBN: 9780791849545 Zakeri, R ; Lee, E. S ; Salimi, M. R ; Sharif University of Technology
    Abstract
    In this paper, we present our results about simulation of 2D-EOF in Nano/Micro scales porous media using lattice Boltzmann method (LBM) in micro-channel for EOF. The high efficient numerical code use strongly high nonlinear Poisson Boltzmann equation to predicate behavior of EOF in complex geometry. The results are developed with precisely investigation of several effective parameters on permeability of EOF, such as geometry (channel height and number and location of charge), external electric field, thickness of Debye length (ionic concentration), and zeta potential. Our results are in excellent agreement with available analytical results. Our results show that for certain external electric... 

    Interactions between high power fiber laser and rock in shaley formation during drilling and production operation

    , Article 6th EAGE Saint Petersburg International Conference and Exhibition ; 7-10 April , 2014 , Pages 594-598 ; ISBN: 9781632665393 Bazargan, M ; Koohian, A ; Jalalyfar, H ; Habibpour, M ; Shahvar, M. P ; Madani, A ; Sharif University of Technology
    Abstract
    This paper is presenting the data on interactions between Fiber laser and shale. With this obvious goal that is dependent on improving the efficiency of laser power. The idea of selecting shale sample was because of variety of this rock type in Iranian oil and gas formations. In the experiment, a long pulsed laser beam was arranged to drill and propagate surfaces, in the opposite direction to the earth gravity, and it was used to drill hole from the top to the bottom of cylindrical Shale rock. The heat that been induced from the Fiber laser is absorbed in the direct surfaces in front and cause heat flux generation inside of rock texture. The specific heat transfer inside of shale sample can... 

    Specific surface and porosity relationship for sandstones for prediction of permeability

    , Article International Journal of Rock Mechanics and Mining Sciences ; Vol. 71, issue , October , 2014 , p. 25-32 Rabbani, A ; Jamshidi, S ; Sharif University of Technology
    Abstract
    Porosity and specific surface are two prominent factors in describing the hydraulic properties of porous media. Determination of these two important parameters leads to identify the capability of porous media to conduct the fluids. In the present study, a new relationship between porosity and specific surface of sandstones has been developed. Micro-CT data from 10 types of sandstones has been utilized in order to present a porosity-specific surface correlation. This correlation also contains the average grain radius of each rock obtained by image processing algorithms. Finally, the correlation is tested on the provided data to evaluate its precision. The simplicity and applicability of the... 

    EFG mesh-less method for coupled hydro-mechanical analysis of unsaturated porous media

    , Article Unsaturated Soils: Research and Applications - Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014 ; Vol. 1, issue , July , 2014 , p. 581-587 ; 978-1-138-00150-3 Samimi, S ; Pak, A ; Sharif University of Technology
    Abstract
    Numerical modeling of the fully coupled phenomena of solid deformation-fluid flow in partially saturated porous media is of great interest in many branches of science and engineering. In this study, a new formulation based on one of the famous mesh-less methods, called Element-Free Galerkin (EFG), is developed to simulate the water and air movement through variably saturated soils. For this purpose, the governing partial differential equations including the equilibrium equation and mass conservation laws for each fluid phase are discretized in space using the same EFG shape functions. To enforce the essential boundary conditions, penalty method is employed. Temporal discretization is... 

    Performance of near-miscible simultaneous water and CO2 injection for oil recovery in secondary and tertiary modes

    , Article 76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy - Incorporating SPE EUROPEC 2014 ; Nov , 2014 , p. 1007-1011 Seyyedsar, S. M ; Ghazanfari, M. H ; Taghikhani, V ; Sharif University of Technology
    Abstract
    Simultaneous water and CO2 injection has been performed on a sandstone core to evaluate oil recovery under the secondary and tertiary near-miscible injection modes. It is demonstrated that secondary SWACO2 injection as well as tertiary flood is an effective method for the oil/residual oil recovery from oil saturated/water-flooded porous media. In the secondary SWACO2 injection, the ultimate oil recovery increases by increasing SWAG ratio from 0.2 to 0.4 but due to some limits, e.g. topological effects, prohibiting contacting of injected gas with residual oil in pores, altering SWAG ratio from 0.4 to 0.6 showed no effect on ultimate oil recovery. Secondary SWACO2 injection can recover higher... 

    Investigating the role of ultrasonic wave on two-phase relative permeability in a free gravity drainage process

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 763-771 Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghazanfari, M. H ; Ghotbi, C ; Sharif University of Technology
    Abstract
    In this work, the process of free gravity drainage under the influence of ultrasonic waves was investigated. A glass bead pack porous medium was used to perform free fall gravity drainage experiments. The tests were performed in the presence and absence of ultrasonic waves, and the data of recovery were recorded versus time under both conditions. The wetting phase relative permeability curves were obtained using the data of recovery versus time, based on the Hagoort backward methodology. Subsequently, using the wetting phase relative permeability curve, the relative permeability of non-wetting phases were calculated by performing history matching to the experimental production data. The... 

    Prediction of Surfactant Retention in Porous Media: A Robust Modeling Approach

    , Article Journal of Dispersion Science and Technology ; Vol. 35, issue. 10 , Sep , 2014 , p. 1407-1418 Yassin, M. R ; Arabloo, M ; Shokrollahi, A ; Mohammadi, A. H ; Sharif University of Technology
    Abstract
    Demands for hydrocarbon production have been increasing in recent decades. As a tertiary production processes, chemical flooding is one of the effective technologies to increase oil recovery of hydrocarbon reservoirs. Retention of surfactants is one of the key parameters affecting the performance and economy of a chemical flooding process. The main parameters contribute to surfactant retention are mineralogy of rock, surfactant structure, pH, salinity, acidity of the oil, microemulsion viscosity, co-solvent concentration, and mobility. Despite various theoretical studies carried out so far, a comprehensive and reliable predictive model for surfactant retention is still found lacking. In this... 

    Simulation of multiphase flows in porous media with gravitational effects using dominant wave method

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 23, Issue 7 , 2013 , Pages 1204-1224 ; 09615539 (ISSN) Moshiri, M ; Manzari, M. T ; Hannani, S. K ; Rasouli, A ; Sharif University of Technology
    2013
    Abstract
    Purpose - In this paper, the flow of multiphase fluids in a one-dimensional homogeneous porous media involving the gravity effects is numerically studied using the dominant wave method. The paper aims to discuss these issues. Design/methodology/approach - The numerical scheme used for solving the pressure equations, obtained for the black-oil model, is a backward Euler scheme while the hyperbolic mass conservation equations, derived for both black-oil and Buckley-Leverett models, are solved using the dominant wave method. Higher-order schemes are achieved using either variable derivatives along with the minmod limiter or a MUSCL type interface construction scheme using the Fromm's limiter.... 

    Effective behavior of porous elastomers containing aligned spheroidal voids

    , Article Acta Mechanica ; Volume 224, Issue 9 , September , 2013 , Pages 1901-1915 ; 00015970 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    The theoretical need to recognize the link between the basic microstructure of nonlinear porous materials and their macroscopic mechanical behavior is continuously rising owing to the existing engineering applications. In this regard, a semi-analytical homogenization model is proposed to establish an overall, continuum-level constitutive law for nonlinear elastic materials containing prolate/oblate spheroidal voids undergoing finite axisymmetric deformations. The microgeometry of the porous materials is taken to be voided spheroid assemblage consisting of confocally voided spheroids of all sizes having the same orientation. Following a kinematically admissible deformation field for a... 

    Effects of using altered coarse grids on the implementation and computational cost of the multiscale finite volume method

    , Article Advances in Water Resources ; Volume 59 , September , 2013 , Pages 221-237 ; 03091708 (ISSN) Mosharaf Dehkordi, M ; Manzari, M. T ; Sharif University of Technology
    2013
    Abstract
    In the present work, the multiscale finite volume (MsFV) method is implemented on a new coarse grids arrangement. Like grids used in the MsFV methods, the new grid arrangement consists of both coarse and dual coarse grids but here each coarse block in the MsFV method is a dual coarse block and vice versa. Due to using the altered coarse grids, implementation, computational cost, and the reconstruction step differ from the original version of MsFV method. Two reconstruction procedures are proposed and their performances are compared with each other. For a wide range of 2-D and 3-D problem sizes and coarsening ratios, the computational costs of the MsFV methods are investigated. Furthermore, a... 

    Non-equilibrium model of gravity drainage in a single block

    , Article Journal of Porous Media ; Volume 16, Issue 6 , 2013 , Pages 559-571 ; 1091028X (ISSN) Jahanbakhshi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    This work concerns with developing a non-equilibrium model of gravity drainage in a single block. The proposed model which considers both non-equilibrium effects of capillary pressure and relative permeabilities is used for prediction of oil recovery by gravity drainage from a single block. Close agreement observed between the model results and experimental data disclosed that the non-equilibrium assumption is completely reliable for modeling of gravity drainage. The results revealed that when the characteristic time of the saturation variation is comparable with the time required to establish capillary equilibrium, the non-equilibrium effects in gravity drainage must be considered. The...