Loading...
Search for: porous-medium
0.005 seconds
Total 149 records

    A bridge between dual porosity and multiscale models of heterogeneous deformable porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 43, Issue 1 , 2019 , Pages 212-238 ; 03639061 (ISSN) Hajiabadi, M. R ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    In this paper, a multiscale homogenization approach is developed for fully coupled saturated porous media to represent the idealized sugar cube model, which is generally employed in fractured porous media on the basis of dual porosity models. In this manner, an extended version of the Hill-Mandel theory that incorporates the microdynamic effects into the multiscale analysis is presented, and the concept of the deformable dual porosity model is demonstrated. Numerical simulations are performed employing the multiscale analysis and dual porosity model, and the results are compared with the direct numerical simulation through 2 numerical examples. Finally, a combined multiscale-dual porosity... 

    A bridge between dual porosity and multiscale models of heterogeneous deformable porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 43, Issue 1 , 2019 , Pages 212-238 ; 03639061 (ISSN) Hajiabadi, M. R ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    In this paper, a multiscale homogenization approach is developed for fully coupled saturated porous media to represent the idealized sugar cube model, which is generally employed in fractured porous media on the basis of dual porosity models. In this manner, an extended version of the Hill-Mandel theory that incorporates the microdynamic effects into the multiscale analysis is presented, and the concept of the deformable dual porosity model is demonstrated. Numerical simulations are performed employing the multiscale analysis and dual porosity model, and the results are compared with the direct numerical simulation through 2 numerical examples. Finally, a combined multiscale-dual porosity... 

    Study of the effect of thermal dispersion on internal natural convection in porous media using fourier series

    , Article Transport in Porous Media ; Volume 131, Issue 2 , 2020 , Pages 537-568 Fahs, M ; Graf, T ; Tran, T. V ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Natural convection in a porous enclosure in the presence of thermal dispersion is investigated. The Fourier–Galerkin (FG) spectral element method is adapted to solve the coupled equations of Darcy’s flow and heat transfer with a full velocity-dependent dispersion tensor, employing the stream function formulation. A sound implementation of the FG method is developed to obtain accurate solutions within affordable computational costs. In the spectral space, the stream function is expressed analytically in terms of temperature, and the spectral system is solved using temperature as the primary unknown. The FG method is compared to finite element solutions obtained using an in-house code... 

    Numerical modeling of density-driven solute transport in fractured porous media with the extended finite element method

    , Article Advances in Water Resources ; Volume 136 , 2020 Hosseini, N ; Bajalan, Z ; Khoei, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a numerical model is developed based on the X-FEM technique to simulate the transport of dense solute in a single fluid phase through the fractured porous media. The governing equation is based on the mass conservation law which is applied to the fluid phase and the solute in both matrix and fracture domain. The integral governing equations of the mass exchange between the fracture and the surrounding matrix is derived. The extended finite element method (X-FEM) is applied by employing appropriate enrichment functions to model the fractured porous domain. The superiority of the X-FEM is that the FE mesh is not necessary to be conformed to the fracture geometry, so the regular... 

    Effect of distance-dependent dispersivity on density-driven flow in porous media

    , Article Journal of Hydrology ; Volume 589 , October , 2020 Younes, A ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the effect of distance-dependent dispersion coefficients on density-driven flow is investigated. The linear asymptotic model, which assumes that dispersivities increase linearly with distance from the source of contamination and reach asymptotic values at a large asymptotic distance, is employed. An in-house numerical model is adapted to handle distance-dependent dispersion. The effect of asymptotic-dispersion on aquifer contamination is analyzed for two tests: (i) a seawater intrusion problem in a coastal aquifer and (ii) a leachate transport problem from a surface deposit site. Global Sensitivity Analysis (GSA) combined with the Polynomial Chaos Expansion (PCE) surrogate... 

    Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework

    , Article Computers and Geotechnics ; Volume 128 , December , 2020 Khoei, A. R ; Salehi Sichani, A ; Hosseini, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a fully coupled numerical model is developed based on the X-FEM technique to simulate the reactive acid transport in fractured porous media. The porous medium consists of the solid and fluid phases, in which the fluid phase includes water and acid components, and chemical reactions can be occurred between acid component and solid phase at the solid–fluid interfaces. The governing equations include the mass and momentum conservation laws for fluid phase, and the advective–diffusive transport of acid component that must be solved to obtain the primary unknowns, including the pore fluid pressure, acid concentration, and fluid velocity vector. Applying the... 

    DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials

    , Article Advances in Water Resources ; Volume 146 , 2020 Rabbani, A ; Babaei, M ; Shams, R ; Wang, Y. D ; Chung, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    DeePore2 is a deep learning workflow for rapid estimation of a wide range of porous material properties based on the binarized micro–tomography images. By combining naturally occurring porous textures we generated 17,700 semi–real 3–D micro–structures of porous geo–materials with size of 2563 voxels and 30 physical properties of each sample are calculated using physical simulations on the corresponding pore network models. Next, a designed feed–forward convolutional neural network (CNN) is trained based on the dataset to estimate several morphological, hydraulic, electrical, and mechanical characteristics of the porous material in a fraction of a second. In order to fine–tune the CNN design,... 

    Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 186 , 2020 Shams, R ; Masihi, M ; Boozarjomehry, R. B ; Blunt, M. J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, coupled Generative Adversarial and Auto-Encoder neural networks have been used to reconstruct realizations of three-dimensional porous media. The gradient-descent-based optimization method is used for training and stabilizing the neural networks. The multi-scale reconstruction has been conducted for both sandstone and carbonate samples from an Iranian oilfield. The sandstone contains inter and intra-grain porosity. The generative adversarial network predicts the inter-grain pores and the auto-encoder provides the generative adversarial network result with intra-grain pores (micro-porosity). Different matching criteria, including porosity, permeability, auto-correlation... 

    Experimental investigation of factors affecting miscible two-phase flow in fractured and non-fractured micromodels

    , Article Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, 23 June 2008 through 25 June 2008, Darmstadt ; Issue PART B , 2008 , Pages 1027-1034 ; 0791848345 (ISBN); 9780791848340 (ISBN) Farzaneh, A ; Kharrat, R ; Ghazanfari, M. H ; ASME ; Sharif University of Technology
    2008
    Abstract
    Micromodel is small-scale artificial model of porous medium which is known as a novel approach for simulating flow and transport in porous media. For better understanding the effect of fracture geometrical properties on oil recovery efficiency, a series of first contact miscible solvent injection process were conducted on horizontal glass micromodels at several fixed flow rate conditions. The micromodels were initially saturated with the heavy crude oil. The produced oil as a function of injected volume of solvents was measured using image analysis of the provided pictures. The concentration calibration curves of solvents in heavy crude oil were used for evaluating the solvents... 

    Modeling fluid flow in fractured porous media with the interfacial conditions between porous medium and fracture

    , Article Transport in Porous Media ; Volume 139, Issue 1 , 2021 , Pages 109-129 ; 01693913 (ISSN) Hosseini, N ; Khoei, A. R ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    One of the most popular models that has been applied to predict the fluid velocity inside the fracture with impermeable walls is the cubic law. It highlights that the mean flux along the fracture is proportional to the cubic of fracture aperture. However, for a fractured porous medium, the normal and tangential interface conditions between the fracture and porous matrix can change the velocity profile inside the fracture. In this paper, a correction factor is introduced for flow equation along the fracture by imposing the continuity of normal and tangential components of velocity at the interface between the fracture and porous matrix. As a result, the mean velocity inside the fracture... 

    Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Mehraban, M. F ; Ayatollahi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Interaction between rock-fluid and fluid-fluid can have a significant effect on oil recovery. Changing the wettability of reservoir rock toward more water-wet or less oil-wet state is one of the expected mechanisms during low salinity water injection (LSWI). pH and salinity are of the most eminent factors of injection water controlling the wettability state of a crude oil/brine/rock system during any waterflooding operation. A small change in pH can affect the surface charges at the rock/water and oil/water interfaces leading to wettability alteration in a porous medium. In this study, the synergic effect of salinity and pH on the wettability state of carbonate rocks is evaluated through... 

    Review of data science trends and issues in porous media research with a focus on image-based techniques

    , Article Water Resources Research ; Volume 57, Issue 10 , 2021 ; 00431397 (ISSN) Rabbani, A ; Fernando, A. M ; Shams, R ; Singh, A ; Mostaghimi, P ; Babaei, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Data science as a flourishing interdisciplinary domain of computer and mathematical sciences is playing an important role in guiding the porous material research streams. In the present narrative review, we have examined recent trends and issues in data-driven methods used in the image-based porous material research studies relevant to water resources researchers and scientists. Initially, the recent trends in porous material data-related issues have been investigated through search engine queries in terms of data source, data storage hub, programing languages, and software packages. Subsequent to a diligent analysis of the existing trends, a review of the common concepts of porous material... 

    A hybrid of statistical and conditional generative adversarial neural network approaches for reconstruction of 3D porous media (ST-CGAN)

    , Article Advances in Water Resources ; Volume 158 , 2021 ; 03091708 (ISSN) Shams, R ; Masihi, M ; Bozorgmehry Boozarjomehry, R ; Blunt, M. J ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A coupled statistical and conditional generative adversarial neural network is used for 3D reconstruction of both homogeneous and heterogeneous porous media from a single two-dimensional image. A statistical approach feeds the deep network with conditional data, and then the reconstruction is trained on a deep generative network. The conditional nature of the generative model helps in network stability and convergence which has been optimized through a gradient-descent-based optimization method. Moreover, this coupled approach allows the reconstruction of heterogeneous samples, a critical and serious challenge in conventional reconstruction methods. The main contribution of this work is to... 

    Pore scale visualization of fluid-fluid and rock-fluid interactions during low-salinity waterflooding in carbonate and sandstone representing micromodels

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Siadatifar, S. E ; Fatemi, M ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low Salinity Waterflooding (LSWF) has become a popular tertiary injection EOR method recently. Both fluid-fluid and fluid-rock interactions are suggested as the contributing mechanisms on the effectiveness of LSWF. Considering the contradictory remarks in the literature, the dominating mechanisms and necessary conditions for Low Salinity Effect (LSE) varies for different crude oil-brine-rock (CBR) systems. The aim of the present study is to investigate LSE for an oil field in the Middle East that is composed of separate sandstone and limestone layers. Contact angles and Interfacial Tension (IFT) are measured to have more insight on the CBR under investigation. Visual experiments were... 

    Hybrid finite volume-finite element methods for hydro-mechanical analysis in highly heterogeneous porous media

    , Article Computers and Geotechnics ; Volume 132 , 2021 ; 0266352X (ISSN) Asadi, R ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, two classes of advanced finite volume schemes, including Multi-Point Flux Approximation (MPFA) and Dual Discrete Finite Volume (DDFV) method, have been employed in conjunction with the finite element (FE) geomechanics simulator to model the coupled fluid-solid system. Fully saturated porous media with poroelastic behavior, random field permeability and elastic modulus are considered as parameters. The performance of the proposed hydro-mechanical models, including MPFA O-FEM and DDFV-FEM, is examined through different test cases. First, the models are validated and compared with the closed-form solutions in the homogeneous domain. Second, the methods' stability and convergence... 

    Analysis of evaporating liquid bridge in horizontal fractures

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Harimi, B ; Ghazanfari, M.H ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The formation of liquid bridge is pertinent to many fields including seepage into underground fractured rocks as an environmental issue and capillary continuity between matrix blocks which controls oil recovery in fractured reservoirs. Evaporation from the surface of liquid bridge into the surrounding gas could affect the stability of liquid bridge and fracture capillary pressure, which is not well discussed in the available literatures. In this research, by the aid of analogy between the diffusive flux and electrostatic potential, a new model for predicting evaporation rate from a liquid bridge inside a horizontal fracture is presented. The proposed model is then coupled with Young-Laplace... 

    Construction of porous calcite structure using microbially induced calcite precipitation

    , Article Journal of Petroleum Science and Engineering ; Volume 217 , 2022 ; 09204105 (ISSN) Alidoustsalimi, N ; Bazargan, M ; Ghobadi Nejad, Z ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Sporosarcina pasteurii is a well-known ureolytic bacteria that promotes the microbially induced calcite precipitation (MICP) process for several environmental and engineering purposes. In our work, for the first time, MICP has been implemented to form pure, porous calcite structures. The maximum urease activity of S. pasteurii was 1.91 mM urea hydrolyzed min−1 at the late-exponentially phase. A reactor has been designed to achieve semi-continuous treatments, and reagents were introduced to it by a peristaltic pump. A new alternating injection pattern was adopted to obtain well-distributed precipitation. SEM images of treated structures indicated the shapes of CaCO3 crystals at a microscale... 

    An extended-fem model for co2 leakage through a naturally fractured cap-rock during carbon dioxide sequestration

    , Article Transport in Porous Media ; Volume 145, Issue 1 , 2022 , Pages 175-195 ; 01693913 (ISSN) Khoei, A. R ; Ehsani, R ; Hosseini, N ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO2 sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (faults). The effect of micro-cracks is incorporated implicitly by modifying the intrinsic permeability tensor of porous matrix, while the macro-cracks are modeled explicitly using the extended finite element method (X-FEM). The fractured porous medium is decomposed into the porous matrix and fracture domain, which are occupied with two immiscible fluid phases, water and CO2. The flow inside the... 

    Hydro-mechanical modeling of two-phase fluid flow in deforming, partially saturated porous media with propagating cohesive cracks using the extended finite element method

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1516-1527 ; 9788489925731 (ISBN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In the present paper, a fully coupled numerical model is developed for the hydromechanical analysis of deforming, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled two-phase fluid flow and deformation processes in partially saturated porous media containing cohesive cracks are derived within the framework of the generalized Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening cohesive law is employed to describe the nonlinear... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Vol. 40, issue , July , 2012 , p. 168-176 ; ISSN: 08941777 Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent...