Loading...
Search for: predictive-controllers
0.008 seconds
Total 271 records

    Water-flooded On-line Reservoir Management Using Multi-variable Multi-model Predictive Controllers

    , M.Sc. Thesis Sharif University of Technology Prrrang, Sahar (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    High efficiency and low-emission fuel cells have the capacity to replace fossil fuels for energy supply concerns. Solid oxide fuel cells operate in relatively high temperature and have power plant applications. Hence, they are acquainted to be coupled with cycle gas turbine to reduce the cost and increase the overall system efficiency. The control of these hybrid systems is so important. Due to the system nonlinearity and having more than one controlled variable, its control with classic methods would be difficult. The model based predictive control is used as an alternative to mitigate these difficulties. In addition to their high performance, their extension to the multivariate case would... 

    Economic Model Predictive Control with Time Varying Constraints

    , M.Sc. Thesis Sharif University of Technology Iman, Sara (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    In today's world we are dealing with many devices and processes with the goal of efficiency and performance improvement. In many processes particularly chemical ones, the goal is to control the output according to its constraints in the way that the performance is economically efficient, such as reducing energy consumption and energy loss and increasing efficiency. In order to control a process with economical goals, an economical cost function is used and after determination of optimal values a controller is used to guide the process so can achieve them. Model predictive control (MPC) is very common in this economic control Due to advantages such as considering the problem constraints. In... 

    An MPC method based on a hybrid model of a three-phase inverter with output LC- filter

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 170-174 ; 9781467301114 (ISBN) Mazaheri, B ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    Controlling inverters with LC output filters in order to achieve a high quality desired output voltage or current is a challenging problem in power electronics. The LC filter and the binary nature of switch state variables increase the difficulty of achieving a single comprehensive model for the system. In this paper, a hybrid model is presented for a three-phase inverter with an LC output filter and a three-phase RL load. Then, the Model Predictive Control (MPC) algorithm is applied to the model and a geometrical approximate method is used to fit the answers to the binary values. Simulation results for a sample system verify the usability of the method and the quality of the answers  

    Welding current and arc voltage control in a GMAW process using ARMarkov based MPC

    , Article Control Engineering Practice ; Volume 19, Issue 12 , December , 2011 , Pages 1408-1422 ; 09670661 (ISSN) Mousavi Anzehaee, M ; Haeri, M ; Sharif University of Technology
    Abstract
    A predictive functional controller based on ARMarkov model structure has been designed to control welding current and arc voltage in a GMAW process. The closed loop system performance is investigated through computer simulations and is compared by those achieved from implementing two commonly used controllers i.e. PI and feedback linearization based PID. The local stability of the closed loop system is analyzed in the presence of uncertainties in the linearized model of the process as well as the control parameters. Finally it is shown that the proposed controller performs like a PI controller along with a pre-filter compensator  

    Distributed model predictive control with hierarchical architecture for communication: application in automated irrigation channels

    , Article International Journal of Control ; Volume 89, Issue 8 , 2016 , Pages 1725-1741 ; 00207179 (ISSN) Farhadi, A ; Khodabandehlou, A ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    This paper is concerned with a distributed model predictive control (DMPC) method that is based on a distributed optimisation method with two-level architecture for communication. Feasibility (constraints satisfaction by the approximated solution), convergence and optimality of this distributed optimisation method are mathematically proved. For an automated irrigation channel, the satisfactory performance of the proposed DMPC method in attenuation of the undesired upstream transient error propagation and amplification phenomenon is illustrated and compared with the performance of another DMPC method that exploits a single-level architecture for communication. It is illustrated that the DMPC... 

    Model predictive control of blood sugar in patients with type-1 diabetes

    , Article Optimal Control Applications and Methods ; Volume 37, Issue 4 , 2016 , Pages 559-573 ; 01432087 (ISSN) Abedini Najafabadi, H ; Shahrokhi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    In this article, two adaptive model predictive controllers (AMPC) are applied to regulate the blood glucose in type 1 diabetic patients. The first controller is constructed based on a linear model, while the second one is designed by using a nonlinear Hammerstein model. The adaptive version of these control schemes is considered to make them more robust against model mismatches and external disturbances. The least squares method with forgetting factor is used to update the model parameters. For simulation study, two well-known mathematical models namely, Puckett and Hovorka which describe the dynamical behavior of patient's body have been selected. The performances and robustness of the... 

    Vehicle trajectory challenge in predictive active steering rollover prevention

    , Article International Journal of Automotive Technology ; Volume 18, Issue 3 , 2017 , Pages 511-521 ; 12299138 (ISSN) Ghazali, M ; Durali, M ; Salarieh, H ; Sharif University of Technology
    Abstract
    High center of mass vehicles are likely to rollover in extreme maneuvers. Available works present control strategies to prevent rollover. In these works, however, other important parameters such as path trajectory tracking are not a main concern. In this paper conflicts between rollover prevention and trajectory tracking is investigated. Model predictive control (MPC) is adopted to predict and avoid rollover while tracking desired trajectory. For this regard a model based future error estimation is introduced. The control framework predicts both rollover and trajectory error simultaneously. It avoids rollover while tries to track the trajectory. Simulation results for two controllers with... 

    Robust fault tolerant explicit model predictive control

    , Article Automatica ; Volume 97 , 2018 , Pages 248-253 ; 00051098 (ISSN) Sheikhbahaei, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, a new algorithm for explicit model predictive control of linear discrete-time systems subject to linear constraints, disturbances, uncertainties, and actuator faults is developed. The algorithm is based on dynamic programming, constraint rearrangement, multi-parametric programming, and a solution combination procedure. First of all, the dynamic programming is used to recast the problem as a multi-stage optimization problem. Afterwards, the constraints are rearranged in an innovative manner to take into account the worst admissible situation of unknown bounded disturbances, uncertainties, and actuator faults. Then, the explicit solution of the reformulated optimization problem... 

    Asteroid precision landing via Probabilistic Multiple-Horizon Multiple-Model Predictive Control

    , Article Acta Astronautica ; Volume 161 , 2019 , Pages 531-541 ; 00945765 (ISSN) AlandiHallaj, M ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper seeks to provide a probabilistic control framework, named Probabilistic Multiple-Horizon Multiple-Model Predictive Control, for the soft and precise landing on an asteroid. The modified version of the Predictive Path Planning method is also introduced to generate a safe and smooth reference trajectory for landing. The Probabilistic Multiple-Horizon Multiple-Model Predictive Control is carried out in two phases; the offline phase to calculate the difference between models, and the online phase to use a probabilistic approach to track the reference trajectory. The difference of the dynamical models is utilized in the online control method to compensate the accuracy of the... 

    A cascade multiple-model predictive controller of nonlinear systems by integrating stability and performance

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 951-955 ; 9781728115085 (ISBN) Rikhtehgar, P ; Ahmadi, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    To deal with strong nonlinearity in nonlinear systems, a new method called cascade multiple-model predictive controller based on gap metric and stability margin, is proposed. The gap metric is utilized to describe the nonlinear system by a linear model bank. It is possible to select nominal local models from the linear model bank by an algorithm based on the gap metric and stability margin to avoid the redundancy of the local controllers. By scheduling proportional controller for each nominal local model, the robust stability is guaranteed whereas there will be no guarantee for the desired performance. Then, by designing a model predictive controller in the cascade structure, the closed loop... 

    Adaptive model predictive TCP delay-based congestion control

    , Article Computer Communications ; Volume 29, Issue 11 , 2006 , Pages 1963-1978 ; 01403664 (ISSN) Haeri, M ; Mohsenian Rad, A. H ; Sharif University of Technology
    2006
    Abstract
    Adaptive Model Predictive Transmission Control Protocol (AMP-TCP) as a new TCP delay-based congestion control algorithm is introduced. Both aspects of design and implementation of the algorithm are described using simulations on the ns-2 network simulator. The design stage is composed of two steps. First, a recursive system identification approach is proposed to capture the network delay dynamics from TCP source view. Second, the proposed modeling is employed to develop an adaptive model predictive TCP congestion control strategy in the absence of any explicit congestion notification. The characteristics and performance of AMP-TCP are investigated using several network simulations. Finally a... 

    Enlarging the region of stability in robust model predictive controller based on dual-mode control

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 14 , 2021 , Pages 3085-3092 ; 01423312 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately.... 

    Modeling, estimation, and model predictive control for Covid-19 pandemic with finite security duration vaccine

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 78-83 ; 9781665480871 (ISBN) Delavar, A ; Baghbadorani, R. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Spreading Covid19 has significantly impacted humans' affairs worldwide, either economically or in a sanitary manner. Besides social distance and hospitalization, making and introducing different vaccines help us ameliorate infection and mortality rates. In this research, we use a nonlinear dynamic model for Covid19, with eight states named susceptible, exposed, infected, quarantined, hospitalized, recovered, deceased, and insusceptible populations. Also, we use social distancing, hospitalization, and vaccination rate as three control inputs. This research aims to stop the Covid-19 from spreading worldwide and minimize exposed, infected and deceased populations using model predictive control.... 

    Receding Horizon Control for Dynamic Cooperative Target Tracking

    , M.Sc. Thesis Sharif University of Technology Moradi Pari, Ehsan (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    A group of vehicles are contributed to follow static or dynamic targets in a cooperative target tracking problem. The vehicles estimate the future location of dynamic targets based on the information they receive from other vehicles and targets. Noting to these estimations, the vehicles are able to decide the best movement toward the targets. Various control methods have been presented to solve different problems of target tracking which the majority of them proposed optimal control solutions. A new approach to the problem of tracking dynamic targets via cooperative multi-vehicle systems under the receding horizon control of the vehicles is proposed in this dissertation. A receding horizon... 

    Model Predictive Control of a Solution Copolymerization Reactor

    , M.Sc. Thesis Sharif University of Technology Sarrami Forushani, Sadegh (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    In the industry, there are nonlinear processes that can not be controlled with classical methods. Also, there are many processes that are more than one controlled variable that with classical methods, the design of a multiple input - multiple output controler is very difficult for them as well as the constraints on the inputs and outputs of the process exist, using classical controllers will be far more difficult. A model-based predictive control method for controlling nonlinear processes is useful in addition to having very high efficiency, extended to multi-mode interference together with constraints on the control variables and other controlled Problem with dynamic properties such as... 

    Analyzing the Interaction of Design and Control in Gas Pipeline

    , M.Sc. Thesis Sharif University of Technology Seddigh, Ehsan (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    The purpose of this project is to study the interactions between process design and process control in a gas transmission pipeline. A part of gas pipeline in two conditions is considered, 1: The gas pipeline that has nominal structure and 2: the one with optimal structure by using an economic objective function that considers the capital and operation cost. To aim this object, by creation of an interface to communicate decision variables between MATLA (as an optimizer and controller engine) and Aspen HYSYS (as a pipeline simulator) is attempted to design and then control the pipeline with to control algorithms PI and MPC. Finally the interaction between process design and process is... 

    Model Predictive Control of Solid Oxide Fuel Cell Stack Using Neuro-Fuzzy Model

    , M.Sc. Thesis Sharif University of Technology Shafiabadi, Navid (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    The application of fuel cell systems as sources of clean energy production is common. Control, performance optimization, design, manufacturing and the operation management are considered as significant research interest of the fuel cell in academic circles. A major problem, at least in the advanced model-based control, is the slowness of solving the nonlinear multi-scale model (time). One option would be using the black-box neuro-fuzzy models. Then if the predictive controller is used for this distributed system, calling the output of neuro-fuzzy model allocated a negligibility proportion in time of calculations during the optimization. In this project, the data generated by a dynamic... 

    Model Predictive Control Based on Integer Programming

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Vahid (Author) ; Farhadi, Alireza (Supervisor)
    Abstract
    Many industrial systems have on/off actuators. Traditionally, these systems are controlled using traditional control methods, like PID controller. The performance of this controller is not ideal for these systems, especially in term of transient response and power consumption. Due to the large number of constraints for these systems, to improve the performance of them, it is necessary to use the model predictive control technic. The decision variables of these systems are integer, hence it is necessary to develop the model predictive control method based on integer programming, which is the subject of this thesis. The main challenge in the development of this model predictive control method,... 

    Predictive and Nonlinear Control of Aircraft in Presence of Microburst Wind Shear

    , M.Sc. Thesis Sharif University of Technology Jafari, Navid (Author) ; Pourtakdoust, Hosein (Supervisor)
    Abstract
    Airplanes usually experience minor position change and height loss during cruise flight, but under normal circumstances the aircraft total energy is adequately acceptable to maintain the trajectory and the desired performance without severe oscillations. On the other hand, if the airplane encounters a wind-shear or microburst during take-off or landing phases, it would be a dangerous situation, as the aircraft kinetic and potential energy levels are not as high.
    In this research, a model predictive controller is designed and investigated to allow a transport category aircraft to either escape or penetrate the microburst. In this regard, initially a DMC controller is designed for 6-DoF... 

    Analysis and Design of Predictive Control Strategy for Sheppard-Taylor Based PFC Rectifier

    , M.Sc. Thesis Sharif University of Technology Abedi, Mohammad Reza (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In this thesis CCM/CVM operation and modeling of the Sheppard-Taylor topology is reviewed and a predictive control strategy is applied for a Sheppard-Taylor-based power factor correction (PFC) rectifier. Compared to conventional boost or buck boost PFC’s, this topology allows a better current tracking at the AC side, with a relatively reduced voltage at the DC side. Consequently, the high frequency AC filters required by the buck PFCs are avoided, and the voltage stresses on the boost switches are significantly reduced. Furthermore In predictive control strategy the duty cycle required to achieve unity power factor in a half line period can be calculated in advance. The main advantage of...