Loading...
Search for: quantum-dot
0.007 seconds

    Highly sensitive selective sensing of nickel ions using repeatable fluorescence quenching-emerging of the CdTe quantum dots

    , Article Materials Research Bulletin ; Volume 95 , 2017 , Pages 532-538 ; 00255408 (ISSN) Zare, H ; Ghalkhani, M ; Akhavan, O ; Taghavinia, N ; Marandi, M ; Sharif University of Technology
    Abstract
    Highly sensitive nickel sensor based on repeatable fluorescence quenching-emerging mechanism was developed. Highly luminescent thioglycolic acid capped CdTe nanocrystals in aqueous solution were applied as the fluorescence probe. These nanocrystals represented a considerable photoluminescence quantum yield as high as 61%. The florescence was quenched by addition of Ni ions to the CdTe nanocrystals solution. Then it was recovered by injection of the proper amount of dimethylglyoxime as the releasing reagent. The relative fluorescence intensity (F0/F) was linearly proportional to the concentration of nickel ions in the range of 0.01–10 μM, with detection limit as low as 7 nM. Described method... 

    Mechanochemical green synthesis of exfoliated edge-functionalized boron nitride quantum dots: application to vitamin c sensing through hybridization with gold electrodes

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 34 , 2018 , Pages 28819-28827 ; 19448244 (ISSN) Angizi, S ; Hatamie, A ; Ghanbari, H ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Two-dimensional boron nitride quantum dots (2D BNQDs) with excellent chemical stability, high photoluminescence efficiency, and low toxicity are a new class of advanced materials for biosensing and bioimaging applications. To overcome the current challenge about the lack of facile, scalable, and reproducible synthesis approach of BNQDs, we introduce a green and facile approach based on mechanochemical exfoliation of bulk h-BN particles in ethanol. Few-layered hydroxylated-functionalized QDs with a thickness of 1-2 nm and a lateral dimension of 2-6 nm have been prepared. The synthesized nanocrystals exhibit a strong fluorescence emission at 407 and 425 nm with a quantum efficiency of ∼6.2%.... 

    Analytical study of electro-elastic fields in quantum nanostructure solar cells: the inter-nanostructure couplings and geometrical effects

    , Article Acta Mechanica ; Volume 229, Issue 7 , 2018 , Pages 3089-3106 ; 00015970 (ISSN) Rashidinejad, E ; Naderi, A. A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Recent investigations on multifunctional piezoelectric semiconductors have shown their excellent potential as photovoltaic components in high-efficiency third-generation quantum nanostructure (QNS) solar cells. The current work is devoted to studying the electro-elastic behavior of high-density QNS photovoltaic semiconductors within which initial mismatch strains of arrays of quantum dots (QDs) or quantum wires (QWRs) induce coupled electro-mechanical fields. The inter-nanostructure couplings which are of great importance in high-density QNS arrays are incorporated in the presented analytical framework. In practice, QNSs with different geometries such as spherical, cuboidal, or pyramidal QDs... 

    Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues

    , Article Carbon ; Volume 130 , April , 2018 , Pages 267-272 ; 00086223 (ISSN) Tayyebi, A ; Akhavan, O ; Lee, B. K ; Outokesh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Supercritical water was used for simultaneous fragmentation and reduction of graphene oxide (GO) sheets into water-dispersible graphene quantum dots (GQDs) with tunable sizes. Transmission electron microscopy (TEM) demonstrated that by increasing the temperature above the critical point of water, the average size and thickness of the GQDs were decreased and the size uniformity and production yield were increased. The results of thermal conductivity measurement of GQD nanofluids with different weight fractions indicated that the GQDs prepared at supercritical condition could enhance the thermal conductivity of water by 65% as compared to 35% for the GQDs synthesized at sub-critical... 

    Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics

    , Article Nano Letters ; Volume 18, Issue 4 , 2018 , Pages 2428-2434 ; 15306984 (ISSN) Tavakoli, M. M ; Giordano, F ; Zakeeruddin, S. M ; Gratzel, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2), or... 

    First principles study of the I-V characteristics of the alkane-thiols nano-molecular wires

    , Article Current Applied Physics ; Volume 9, Issue 2 , 2009 , Pages 367-373 ; 15671739 (ISSN) Aghaie, H ; Gholami, M. R ; Darvish Ganji, M ; Taghavi, M. M ; Sharif University of Technology
    2009
    Abstract
    We report a density functional non-equilibrium Green's function study of electrical transport in a single molecular conductor consisting of an ethane-dithiolate (C2H4S2) molecular wire with two sulfur end groups bonded to the Au(1 1 1) electrodes. We show that the current was increased by increasing the external voltage biases. The projected density of states (PDOS) and transmission coefficients T(E) under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to the increase of the current. Furthermore, the investigation of the transport properties of the pentane-dithiolate (C5H10S2)... 

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    A multichannel single-well sensor array for rapid and visual discrimination of catecholamine neurotransmitters

    , Article Sensors and Actuators, B: Chemical ; Volume 296 , 2019 ; 09254005 (ISSN) Abbasi Moayed, S ; Hormozi Nezhad, M. R ; Maaza, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, for rapid identification and discrimination of catecholamine neurotransmitters in the presence of ascorbic acid (AA), a tricolor fluorescence probe has been constructed by integrating three recognition elements including blue carbon dots (bCDs), green CdTe quantum dots (gQDs) and red CdTe quantum dots (rQDs) into a single well. The proposed array exhibited ternary fluorescence emissions at 450, 520 and 630 nm with an overall luminescent pink emission under a single wavelength excitation (365 nm). In order to produce distinct response patterns from a single fluorimetric test, the spectral changes and the corresponding color variations of the multichannel fluorescence probe were... 

    Surface/edge functionalized boron nitride quantum dots: Spectroscopic fingerprint of bandgap modification by chemical functionalization

    , Article Ceramics International ; Volume 46, Issue 1 , 2020 , Pages 978-985 Angizi, S ; Shayeganfar, F ; Hasanzadeh Azar, M ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Promising properties of boron nitride nanomaterials such as their chemical, thermal, and mechanical stability have made them suitable materials in a various range of applications. However, their low electrical conductivity and wide bandgap, particularly in the case of boron nitride quantum dots (BNQDs), have given rise to severe limitations. Efforts on bandgap engineering through doping and surface functionalization have gained little success due to their high thermodynamic stability and inertness. Herein, we present a novel approach to functionalize BNQDs by hydroxyl, methyl, and amine functional groups aiming to adjust the electronic structure. The successful exfoliation is demonstrated by... 

    Numerical investigation of effect of aspect ratio of rectangular nozzles

    , Article 2008 2nd International Conference on Thermal Issues in Emerging Technologies, ThETA 2008, Cairo, 17 December 2008 through 20 December 2008 ; July , 2008 , Pages 391-398 ; 9781424435777 (ISBN) Faghani, E ; Farhanieh, B ; Maddahian, R ; Faghani, P ; Sharif University of Technology
    2008
    Abstract
    In this research the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-e model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at jet centerline are noted. The velocity vectors of a main flow and secondary flow are illustrated. Also effect of aspect ratio on mixing in rectangular cross... 

    A new solution for password key transferring in steganography methods by CAPTCHA through MMS technology

    , Article 2007 International Conference on Information and Emerging Technologies, ICIET, Karachi, 6 July 2007 through 7 July 2007 ; 2007 , Pages 136-141 ; 1424412463 (ISBN); 9781424412464 (ISBN) Shirali Shahreza, M ; Shirali Shahreza, M. H ; Sharif University of Technology
    2007
    Abstract
    The Multimedia Messaging System (MMS) allows a user of a mobile phone to send messages containing multimedia objects, such as images, audio or video clips. On the other hand establishing hidden communication is an important subject of discussion that has gained increasing importance nowadays with the development of the Internet. One of the methods introduced for establishing hidden communication is steganography. Therefore steganography in MMS is an interesting idea. One of the problems in steganography methods is the security of transferring password key used for steganography between sender and receiver of secure data. In this paper a new method is proposed for solving this problem using... 

    Nanotechnology-assisted microfluidic systems: From bench to bedside

    , Article Nanomedicine ; Volume 16, Issue 3 , 2021 , Pages 237-258 ; 17435889 (ISSN) Rabiee, N ; Ahmadi, S ; Fatahi, Y ; Rabiee, M ; Bagherzadeh, M ; Dinarvand, R ; Bagheri, B ; Zarrintaj, P ; Saeb, M. R ; Webster, T. J ; Sharif University of Technology
    Future Medicine Ltd  2021
    Abstract
    With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next... 

    Photoluminescent carbon quantum dot/poly-L-Lysine core-shell nanoparticles: A novel candidate for gene delivery

    , Article Journal of Drug Delivery Science and Technology ; Volume 61 , 2021 ; 17732247 (ISSN) Hasanzadeh, A ; Mofazzal Jahromi, M. A ; Abdoli, A ; Mohammad Beigi, H ; Fatahi, Y ; Nourizadeh, H ; Zare, H ; Kiani, J ; Radmanesh, F ; Rabiee, N ; Jahani, M ; Mombeiny, R ; Karimi, M ; Sharif University of Technology
    Editions de Sante  2021
    Abstract
    Cationic polymers such as poly-L-lysine (PLL) are able to interact electrostatically with DNA to produce polymeric systems with nanometric diameters due to the neutralization and accumulation of DNA. This study integrates the outstanding properties of carbon quantum dots (CQDs) with PLL to develop a novel gene delivery vehicle with a core-shell hybrid nanostructure. The CQD/PLL core-shell nanoparticles (NPs) were, therefore, synthesized in such a way that they had narrow size distribution and an average diameter under 10 nm, both of which were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy exhibited that... 

    Stable Photodetectors based on fstable photodetectors based on formamidinium lead iodide quantum well perovskite nanoparticles fabricated with excess organic cations.ormamidinium lead iodide quantum well perovskite nanoparticles fabricated with excess organic cations

    , Article ACS Applied Nano Materials ; Volume 4, Issue 8 , 2021 , Pages 7788-7799 ; 25740970 (ISSN) Hasanzadeh Azar, M ; Mohammadi, M ; Rezaei, N.T ; Aynehband, S ; Shooshtari, L ; Mohammadpour, R ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Metal halide perovskite nanoparticles have recently attracted immense interest for photodetectors due to their outstanding optical and electronic properties such as high carrier diffusion length, tunable band gap (light absorption range), and high photoluminescence (PL) efficiency. Although significant progress has been achieved in the development of perovskites, their stability is yet to be addressed. To improve the stability and quantum efficiency of FAPbI3 perovskite nanocrystals, we present a room temperature protocol to fabricate fully passivated and stable FAPbI3 nanocrystals via 2D growth in the presence of amine ligands and an excess amount of the organic cations. The crystallization... 

    New blend nanocomposite membranes based on PBI/sulfonated poly(ether keto imide sulfone) and functionalized quantum dot with improved fuel cell performance at high temperatures

    , Article International Journal of Energy Research ; Volume 45, Issue 15 , August , 2021 , Pages 21274-21292 ; 0363907X (ISSN) Hooshyari, K ; Rezania, H ; Vatanpour, V ; Rastgoo Deylami, M ; Rajabi, H. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this work, we reported the synthesis of a sulfonated poly(ether keto imide sulfone) (SPEKIS) using a novel aromatic diol containing nitrogen heterocycles and sulfonic monomer. New nanocomposite blend membranes were prepared using obtained SPEKIS and polybenzimidazole (PBI) with the incorporation of zinc sulfide (ZnS) functionalized quantum dots (FQDs) having both -COOH and NH2 groups with a solution-casting method and were used as proton exchange membranes. The SPEKIS and ZnS FQDs were used for the first time in the preparation of new nanocomposite blend membranes based on PBI. The purpose of this study is to investigate the effect of SPEKIS and ZnS FQDs on the PBI membrane performance in... 

    Synthesis of magnetic ions-doped QDs Synthesized Via a facial aqueous solution method for Optical/MR dual-modality imaging applications

    , Article Journal of Fluorescence ; Volume 31, Issue 3 , 2021 , Pages 897-906 ; 10530509 (ISSN) Gharghani, S ; Zare, H ; Shahedi, Z ; Fazaeli, Y ; Rahighi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    This research reports the preparation and examination of Cadmium Telluride (CdTe) Quantum Dots and doping CdTe QDs with Europium (Eu), Gadolinium (Gd), and Manganese (Mn) prepared in aqueous solution using TGA as a capping agent. Magnetic QDs (MQDs) are important agents for fluorescence (FL) /magnetic resonance (MR) dual-modal imaging due to their excellent optical and magnetic properties. Herein, the chemical bonds, structural, fluorescence, and magnetized properties of CdTe QDs and effect of Mn, Eu, and Gd ions doping on their properties were examined by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTM), Energy-dispersive X-ray spectroscopy (EDX),... 

    Histidine-enhanced gene delivery systems: The state of the art

    , Article Journal of Gene Medicine ; Volume 24, Issue 5 , 2022 ; 1099498X (ISSN) Hooshmand, S. E ; Jahanpeimay Sabet, M ; Hasanzadeh, A ; Kamrani Mousavi, S. M ; Haeri Moghaddam, N ; Hooshmand, S. A ; Rabiee, N ; Liu, Y ; Hamblin, M. R ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine,... 

    Design of a GaN white light-emitting diode through envelope function analysis

    , Article IEEE Journal of Quantum Electronics ; Volume 46, Issue 2 , 2010 , Pages 228-237 ; 00189197 (ISSN) Khoshnegar, M ; Sodagar, M ; Eftekharian, A ; Khorasani, S ; Sharif University of Technology
    Abstract
    In this paper, we present an envelope function analysis technique for the design of the emission spectra of a white quantum-well light-emitting diode (QWLED). The nano- metric heterostructure that we are dealing with is a multiple QW, consisting of periods of three single QWs with various well thicknesses. With the aid of 6 × 6 Luttinger Hamiltonian, we employ the combination of two methods, k · p perturbation and the transfer matrix method, to acquire the electron and hole wave functions numerically. The envelope function approximation was considered to obtain these wave functions for a special basis set. While adjacent valence sub-bands have been determined approximately, the conduction... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally...