Loading...
Search for: quantum-dots
0.04 seconds
Total 181 records

    Tunable Carbon–CsPbI3 quantum dots for white LEDs

    , Article Advanced Optical Materials ; 2020 Rafiei Rad, R ; Gualdrón-Reyes, A. F ; Masi, S ; Ganji, B. A ; Taghavinia, N ; Gené-Marimon, S ; Palomares, E ; Mora Seró, I ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    In this work, a simple method to prepare white light emissive diodes based on quantum dot (QD) colloidal solutions using mixed carbon QDs (CQDs) and CsPbI3 perovskite (PQDs) is reported. The right combination generates emission across the entire visible spectrum upon ultraviolet excitation. The white light emission of the final films provides high and stable color rendering index of 92%, tuning the chromaticity coordinates of the emission through the applied voltage. By varying the CsPbI3 QD concentration, a mixture is obtained that emits the “warm”, “neutral”, and “cold” white light sought for many indoor lighting applications, or to approximate the visible region of the solar spectrum,... 

    Effect of synthesis temperature of magnetic–fluorescent nanoparticles on properties and cellular imaging

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 30, Issue 11 , 2020 , Pages 4597-4605 Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini, H. R ; Zare, K ; Sharif University of Technology
    Springer  2020
    Abstract
    The excellent photoluminescent properties of Fe3O4-graphene quantum dots (Fe3O4/GQD) nanoparticles prepared at 30 and 90 °C have made them as promising optical probes for imaging. Herein, the cytotoxicity of GQD and Fe3O4/GQD nanoparticles in L929 cells was investigated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide] assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. The Fe3O4/GQD nanoparticles were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL). Characterization results obtained, clearly show that Fe3O4/GQD nanoparticles... 

    Photovoltaic performance and electrochemical impedance spectroscopy analysis of CdS/CdSe-sensitized solar cell based on surfactant-modified ZnS treatment

    , Article Applied Physics A: Materials Science and Processing ; Volume 126, Issue 6 , 2020 Samadpour, M ; Dehghani, M ; Parand, P ; Natagh Najafi, M ; Parvazian, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Among the various approaches, ZnS treatment is the most convenient method for reducing the charge recombination in quantum dot-sensitized solar cells (QDSSCs). Here an improved method of ZnS treatment is explained for efficiency enhancement in QDSSCs. To get to the goal of device performance improvement, it is essential to have a uniform deposited layer. We utilized Triton X-100 (TX-100) as a surfactant to the convenient aqueous precursors during ZnS deposition by successive ionic layer adsorption and reaction method. It helps to decrease in contact angle and increase in wettability of the aqueous precursor and results in a more uniform deposited layer. The effect of modified ZnS treatment... 

    Efficient perovskite solar cells based on Cdse/Zns quantum dots electron transporting layer with superior UV stability

    , Article Physica Status Solidi - Rapid Research Letters ; Volume 14, Issue 6 , 2020 Tavakoli, M. M ; Prochowicz, D ; Yadav, P ; Tavakoli, R ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Stability is the main challenge in the field of perovskite solar cells (PSCs). Finding new strategies is required to protect the PSCs from deteriorating agents such as humidity, heating, and illumination. Herein, a new electron transporting layer (ETL), i.e., CdSe/ZnS quantum dots (QDs), is proposed for the fabrication of efficient and stable PSCs. CdSe/ZnS QDs layer not only works as an ETL but also has downshifting property, which can improve both efficiency and stability of the PSCs. Using CdSe/ZnS QDs ETL with green emission, a PSC with maximum power conversion efficiency (PCE) of 18% is achieved. More importantly, the device shows great UV stability, much better than the device with... 

    Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance

    , Article Applied Catalysis B: Environmental ; Volume 269 , 2020 Zhou, T ; Chen, S ; Li, L ; Wang, J ; Zhang, Y ; Li, J ; Bai, J ; Xia, L ; Xu, Q ; Rahim, M ; Zhou, B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    TiO2 is a promising photoanode material for photoelectrochemical (PEC) water splitting, but its severe bulk recombination of photogenerated carriers, sluggish oxygen evolution reaction (OER) kinetics and poor visible light response are the main bottleneck problems. Here, the carbon quantum dots (CQDs) modified anatase/rutile TiO2 photoanode (CQDs/A/R-TiO2) was designed by growth of anatase TiO2 nanothorns on rutile TiO2 nanorods and further surface modification of CQDs. The results revealed that the A/R-TiO2 heterojunction significantly suppressed the bulk recombination of photogenerated carriers. With further incorporation of CQDs into A/R-TiO2, dramatical improvement of OER kinetics and... 

    Bottom-up synthesis of nitrogen and oxygen co-decorated carbon quantum dots with enhanced DNA plasmid expression

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 184 , 2019 ; 09277765 (ISSN) Yadegari, A ; Khezri, J ; Esfandiari, S ; Mahdavi, H ; Karkhane, A. A ; Rahighi, R ; Heidarimoghadam, R ; Tayebi, L ; Hashemi, E ; Farmany, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, a bottom-up hydrothermal route is reported for the synthesis of oxygen and nitrogen co-decorated carbon quantum dots (CQDs) using ammonium hydrogen citrate (AHC) as a single precursor. DLS data approved the formation of 4.0 nm (average size) CQDs. XRD pattern shows the interlayer spacing (002) of 3.5 Å for CQDs, which is exactly the same as that of crystalline graphite. XPS and FTIR spectra verified the formation of oxygen and nitrogen functional groups on the CQDs surface. Co-decorated carboxyl, hydroxyl and amine groups on the CQDs surfaces make them as promising polyelectrolyte for gene delivery. Toxicity assay showed a survival rate of 70% under different incubation times... 

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    A multichannel single-well sensor array for rapid and visual discrimination of catecholamine neurotransmitters

    , Article Sensors and Actuators, B: Chemical ; Volume 296 , 2019 ; 09254005 (ISSN) Abbasi Moayed, S ; Hormozi Nezhad, M. R ; Maaza, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, for rapid identification and discrimination of catecholamine neurotransmitters in the presence of ascorbic acid (AA), a tricolor fluorescence probe has been constructed by integrating three recognition elements including blue carbon dots (bCDs), green CdTe quantum dots (gQDs) and red CdTe quantum dots (rQDs) into a single well. The proposed array exhibited ternary fluorescence emissions at 450, 520 and 630 nm with an overall luminescent pink emission under a single wavelength excitation (365 nm). In order to produce distinct response patterns from a single fluorimetric test, the spectral changes and the corresponding color variations of the multichannel fluorescence probe were... 

    Determination and identification of nitroaromatic explosives by a double-emitter sensor array

    , Article Talanta ; Volume 201 , 2019 , Pages 230-236 ; 00399140 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Detection of nitroaromatic explosives is of strong concern because of human health, public safety, environment, and military issues. In this study, we present a ratiometric sensor array for detection and discrimination of widely-used nitroaromatics (i.e., 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenol (TNP), and 2,4-dinitrotoluene (DNT)). In the design of sensor elements (SE) we employ blue emissive carbon dots (BCDs) in combination with yellow (SE-A) and red (SE-B) emissive cadmium telluride quantum dots (CdTe QDs). The fluorescence intensity of BCDs, YQDs, and RQDs is quenched by TNT, DNT, and TNP in various degrees. Both TNT and TNP cause the quenching and spectral shift of BCDs (TNT... 

    Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells

    , Article ACS Applied Materials and Interfaces ; Volume 11, Issue 29 , 2019 , Pages 26047-26052 ; 19448244 (ISSN) Tavakoli Dastjerdi, H ; Tavakoli, R ; Yadav, P ; Prochowicz, D ; Saliba, M ; Tavakoli, M. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    PbS quantum dots (QDs) have been extensively studied for photovoltaic applications, thanks to their facile and low-cost fabrication processing and interesting physical properties such as size dependent and tunable band gap. However, the performance of PbS QD-based solar cells is highly sensitive to the humidity level in the ambient air, which is a serious obstacle toward its practical applications. Although it has been previously revealed that oxygen doping of the hole transporting layer can mitigate the cause of this issue, the suggested methods to recover the device performance are time-consuming and relatively costly. Here, we report a low-power oxygen plasma treatment as a rapid and... 

    Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa

    , Article Microchemical Journal ; Volume 148 , 2019 , Pages 591-596 ; 0026265X (ISSN) Moslehipour, A ; Bigdeli, A ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    Simply obtained by the oxidation of levodopa in alkaline media, polylevodopa nanoparticles are able to quench the fluorescence emission of CdTe quantum dots (QDs) via energy transfer mechanism. The extent of this quenching can be exploited for the quantification of levodopa, as an important therapeutic agent in the treatment of Parkinson's disease. However, to effectively improve the detection performance, in this study, we have designed a ratiometric probe by making use of variations in both the emission of QDs and the intrinsic emission of polylevodopa nanoparticles. The enhanced sensitivity, in particular, arose from the measurement of the ratio of fluorescence intensities at two... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Tunable spherical graphene surface plasmon amplification by stimulated emission of radiation

    , Article Journal of Nanophotonics ; Volume 13, Issue 2 , 2019 ; 19342608 (ISSN) Ardakani, S. B ; Faez, R ; Sharif University of Technology
    SPIE  2019
    Abstract
    A structure is suggested for spasing. The presented surface plasmon amplification by stimulated emission of Radiation (SPASER) is made up of a graphene nanosphere, which supports localized surface plasmon modes, and a quantum dot array, acting as a gain medium. The gain medium is pumped by an external light source. Since all the plasmons are carried on a graphene platform, the structure features coherent surface plasmons with high confinement and large life time. All the structures are analyzed theoretically using full quantum mechanical description. The main advantage of the proposed SPASER is its simple tuning capability of changing graphene's Fermi level, which is performed by either... 

    Mechanochemical green synthesis of exfoliated edge-functionalized boron nitride quantum dots: application to vitamin c sensing through hybridization with gold electrodes

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 34 , 2018 , Pages 28819-28827 ; 19448244 (ISSN) Angizi, S ; Hatamie, A ; Ghanbari, H ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Two-dimensional boron nitride quantum dots (2D BNQDs) with excellent chemical stability, high photoluminescence efficiency, and low toxicity are a new class of advanced materials for biosensing and bioimaging applications. To overcome the current challenge about the lack of facile, scalable, and reproducible synthesis approach of BNQDs, we introduce a green and facile approach based on mechanochemical exfoliation of bulk h-BN particles in ethanol. Few-layered hydroxylated-functionalized QDs with a thickness of 1-2 nm and a lateral dimension of 2-6 nm have been prepared. The synthesized nanocrystals exhibit a strong fluorescence emission at 407 and 425 nm with a quantum efficiency of ∼6.2%.... 

    Analytical study of electro-elastic fields in quantum nanostructure solar cells: the inter-nanostructure couplings and geometrical effects

    , Article Acta Mechanica ; Volume 229, Issue 7 , 2018 , Pages 3089-3106 ; 00015970 (ISSN) Rashidinejad, E ; Naderi, A. A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Recent investigations on multifunctional piezoelectric semiconductors have shown their excellent potential as photovoltaic components in high-efficiency third-generation quantum nanostructure (QNS) solar cells. The current work is devoted to studying the electro-elastic behavior of high-density QNS photovoltaic semiconductors within which initial mismatch strains of arrays of quantum dots (QDs) or quantum wires (QWRs) induce coupled electro-mechanical fields. The inter-nanostructure couplings which are of great importance in high-density QNS arrays are incorporated in the presented analytical framework. In practice, QNSs with different geometries such as spherical, cuboidal, or pyramidal QDs... 

    Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues

    , Article Carbon ; Volume 130 , April , 2018 , Pages 267-272 ; 00086223 (ISSN) Tayyebi, A ; Akhavan, O ; Lee, B. K ; Outokesh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Supercritical water was used for simultaneous fragmentation and reduction of graphene oxide (GO) sheets into water-dispersible graphene quantum dots (GQDs) with tunable sizes. Transmission electron microscopy (TEM) demonstrated that by increasing the temperature above the critical point of water, the average size and thickness of the GQDs were decreased and the size uniformity and production yield were increased. The results of thermal conductivity measurement of GQD nanofluids with different weight fractions indicated that the GQDs prepared at supercritical condition could enhance the thermal conductivity of water by 65% as compared to 35% for the GQDs synthesized at sub-critical... 

    Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines

    , Article Toxicology and Industrial Health ; Volume 34, Issue 5 , 2018 , Pages 339-352 ; 07482337 (ISSN) Naderi, S ; Zare, H ; Taghavinia, N ; Irajizad, A ; Aghaei, M ; Panjehpour, M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Introduction: Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. Methods: The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was... 

    A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II)

    , Article Sensors and Actuators, B: Chemical ; Volume 259 , 2018 , Pages 894-899 ; 09254005 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A new strategy has been proposed to expand color-tunability of ratiometric fluorescent probes. It was shown that the combination of blue emissive color (as an internal standard) and yellow emissive color (as a probe) is an efficient way to create an extensive color range in ratiometric probes. However, due to the nature of the interaction between the analyte and the probe in terms of fluorescence quenching, occurance of the redshift in the emission is the major provision of such a probe. Our developed ratiometric fluorescence probe consists of blue emissive carbon dots (BCDs) and thioglycolic acid (TGA)-capped yellow emissive cadmium telluride (CdTe) quantum dots (YQDs). The ratiometric... 

    Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics

    , Article Nano Letters ; Volume 18, Issue 4 , 2018 , Pages 2428-2434 ; 15306984 (ISSN) Tavakoli, M. M ; Giordano, F ; Zakeeruddin, S. M ; Gratzel, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2), or... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally...