Loading...
Search for: quantum-entanglement
0.008 seconds

    Capacities of the covariant Pauli channel

    , Article Physical Review A ; Volume 106, Issue 6 , 2022 ; 24699926 (ISSN) Poshtvan, A ; Karimipour, V ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    We study four well-known capacities of a two-parameter family of qubit Pauli channels. These are the channels that are covariant under the SO(2) group and contain the depolarizing channel as a special case. We find exact expressions for the classical capacity and entanglement-assisted capacities, and analytically determine the regions where the quantum capacity of the channel vanishes. We then use a flag extension to find upper bound for the quantum capacity and private capacity of these channels in the entire region of parameter space and also obtain the lower bound for the quantum capacity by calculating the single-shot quantum capacity numerically. In conjunction with previous results on... 

    Coherence-based characterization of macroscopic quantumness

    , Article Physical Review A ; Volume 103, Issue 3 , 2021 ; 24699926 (ISSN) Naseri, M ; Raeisi, S ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    One of the most elusive problems in quantum mechanics is the transition between classical and quantum physics. This problem can be traced back to Schrödinger's cat thought experiment. A key element that lies at the center of this problem is the lack of a clear understanding and characterization of macroscopic quantum states. Our understanding of macroscopic quantumness relies on states such as the Greenberger-Horne-Zeilinger (GHZ) or the NOON state. Here we take a first-principle approach to this problem. We start from coherence as the key quantity that captures the notion of quantumness and require the quantumness to be collective and macroscopic. To this end, we introduce macroscopic... 

    Entanglement from dissipative dynamics into overlapping environments

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Vol. 90, issue. 6 , Dec , 2014 Mengoni, R ; Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    Abstract
    We consider two ensembles of qubits dissipating into two overlapping environments, that is, with a certain number of qubits in common that dissipate into both environments. We then study the dynamics of bipartite entanglement between the two ensembles by excluding the common qubits. To get analytical solutions for an arbitrary number of qubits we consider initial states with a single excitation and show that the largest amount of entanglement can be created when excitations are initially located among side (noncommon) qubits. Moreover, the stationary entanglement exhibits a monotonic (nonmonotonic) scaling versus the number of common (side) qubits  

    Entanglement dynamics for qubits dissipating into a common environment

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 87, Issue 3 , 2013 ; 10502947 (ISSN) Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    2013
    Abstract
    We provide an analytical investigation of the entanglement dynamics for a system composed of an arbitrary number of qubits dissipating into a common environment. Specifically, we consider product initial states with a given number of excitations whose evolution remains confined on low-dimensional subspaces of the operators space. We then find for which pairs of qubits entanglement can be generated and can persist at a steady state. Finally, we determine the stationary distribution of entanglement as well as its scaling versus the total number of qubits in the system  

    Stationary entanglement achievable by environment-induced chain links

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 83, Issue 4 , 2011 ; 10502947 (ISSN) Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    Abstract
    We investigate the possibility of chaining qubits by letting pairs of nearest-neighbor qubits dissipate into common environments. We then study entanglement dynamics within the chain and show that steady-state entanglement can be achieved  

    Minimum output entropy of a non-gaussian quantum channel

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 94, Issue 2 , 2016 ; 10502947 (ISSN) Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    We introduce a model of a non-Gaussian quantum channel that stems from the composition of two physically relevant processes occurring in open quantum systems, namely, amplitude damping and dephasing. For it we find input states approaching zero output entropy while respecting the input energy constraint. These states fully exploit the infinite dimensionality of the Hilbert space. Upon truncation of the latter, the minimum output entropy remains finite, and optimal input states for such a case are conjectured thanks to numerical evidence  

    Group-covariant extreme and quasiextreme channels

    , Article Physical Review Research ; Volume 4, Issue 3 , 2022 ; 26431564 (ISSN) Memarzadeh, L ; Sanders, B. C ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    Constructing all extreme instances of the set of completely positive trace-preserving (CPTP) maps, i.e., quantum channels, is a challenging and valuable open problem in quantum information theory. Here we introduce a systematic approach that, despite the lack of knowledge about the full parametrization of the set of CPTP maps on arbitrary Hilbert-spaced dimension, enables us to construct exactly those extreme channels that are covariant with respect to a finite discrete group or a compact connected Lie group. Innovative labeling of quantum channels by group representations enables us to identify the subset of group-covariant channels whose elements are group-covariant generalized-extreme... 

    Cohering and decohering power of quantum channels

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 92, Issue 3 , 2015 ; 10502947 (ISSN) Mani, A ; Karimipour, V ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We introduce the concepts of cohering and decohering power of quantum channels. Using the axiomatic definition of the coherence measure, we show that the optimization required for calculations of these measures can be restricted to pure input states and hence greatly simplified. We then use two examples of this measure, one based on the skew information and the other based on the l1 norm; we find the cohering and decohering measures of a number of one-, two-, and n-qubit channels. Contrary to the view at first glance, it is seen that quantum channels can have cohering power. It is also shown that a specific property of a qubit unitary map is that it has equal cohering and decohering power in... 

    Comparison of parallel and antiparallel two-qubit mixed states

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 91, Issue 1 , January , 2015 ; 10502947 (ISSN) Mani, A ; Karimipour, V ; Memarzadeh, L ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We investigate the correlation properties of separable two-qubit states with maximally mixed marginals. These states are divided to two sets with the same geometric quantum correlation. However, a closer scrutiny of these states reveals a profound difference between their quantum correlations as measured by more probing measures. Although these two sets of states are prepared by the same type of quantum operations acting on classically correlated states with equal classical correlations, the amount of final quantum correlation is different. We investigate this difference and trace it back to the hidden classical correlation which exists in their preparation process. We also compare these... 

    Entangled multimode spin coherent states of trapped ions

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 6 , 2018 , Pages 1211-1217 ; 07403224 (ISSN) Maleki, Y ; Maleki, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Multimode macroscopic states consisting of a superposition of spin coherent states that are generated in a trapped ion system are introduced. The role of various parameters that control the entanglement of the system are exposed, and their effects are quantified. In particular, it is shown that the generated states exhibit different entanglement characteristics for odd and even 2nj, where j is the spin of each mode and n is the number of modes. © 2018 Optical Society of America  

    Generation of motional entangled coherent state in an optomechanical system in the single photon strong coupling regime

    , Article Journal of Modern Optics ; Volume 62, Issue 19 , Jul , 2015 , Pages 1685-1691 ; 09500340 (ISSN) Mahmoudi, Z ; Shakeri, S ; Hamidi, O ; Zandi, M. H ; Bahrampour, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    The single-photon strong coupling in the deep-resolved sideband of the optomechanical system induces photon blockade (PB) effect. For the PB cavity, an initial mechanical coherent state evolves into superposition of phonon cat states entangled with the cavity Fock states. Measurement of the cavity photon number states produces phonon even and odd cat states. The information leakage effect of two photon states on the fidelity of cat states is calculated, it is shown that for low average phonon number this effect is negligible and decreases by increasing the two photon cavity state. The Lindblad equation is solved numerically to obtain the environmental effects on the fidelity of cat states  

    Removing correlations in signals transmitted over a quantum memory channel

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 85, Issue 1 , January , 2012 ; 10502947 (ISSN) Lupo, C ; Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    2012
    Abstract
    We consider a model of a bosonic memory channel, which induces correlations among the transmitted signals. The application of suitable unitary transformations at the encoding and decoding stages allows the complete removal of correlations, thereby mapping the memory channel into a memoryless one. However, such transformations, being global over an arbitrarily large number of bosonic modes, are not realistically implementable. We then introduce a family of efficiently realizable transformations, which can be used to partially remove correlations among errors, and we quantify the reduction of the gap with memoryless channels  

    Progress towards macroscopic spin and mechanical superposition via Rydberg interaction

    , Article Physical Review A ; Volume 98, Issue 4 , 2018 ; 24699926 (ISSN) Khazali, M ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    This paper is a proposal for the generation of a many-body entangled state in atomic and mechanical systems. Here the detailed feasibility study shows that application of a strong Rydberg dressing interaction and a fast bifurcation scheme in a Bose-Einstein condensate of Rb atoms, results in the formation of large cat states. By detailed study of the decoherence effects using the quantum jump Monte Carlo approach and taking into account the obstacles like collective decoherence and level mixing, this proposal predicts the formation of a 700-atom cat state. Subsequent transfer of the generated superposition to far separated mechanical oscillators is proposed, using dipole coupling between... 

    Mimicking the Hadamard discrete-time quantum walk with a time-independent Hamiltonian

    , Article Quantum Information Processing ; Volume 18, Issue 5 , 2019 ; 15700755 (ISSN) Khatibi Moqadam, J ; de Oliveira, M. C ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The discrete-time quantum walk dynamics can be generated by a time-dependent Hamiltonian, repeatedly switching between the coin and the shift generators. We change the model and consider the case where the Hamiltonian is time-independent, including both the coin and the shift terms in all times. The eigenvalues and the related Bloch vectors for the time-independent Hamiltonian are then compared with the corresponding quantities for the effective Hamiltonian generating the quantum walk dynamics. Restricted to the non-localized initial quantum walk states, we optimize the parameters in the time-independent Hamiltonian such that it generates a dynamics similar to the Hadamard quantum walk. We... 

    Obstacles on the Way Toward an Entropic Uncertainty Relation

    , Article International Journal of Theoretical Physics ; 2013 , Pages 1-10 ; 00207748 (ISSN) Khatam, I ; Shafiee, A ; Sharif University of Technology
    2013
    Abstract
    Deutsch's entropic uncertainty relation is examined by using two experiments in which the spin of a single spin-half particle is detected after passing through two Stern-Gerlach apparatuses in two successive times. Two experiments differ only in the angle settings of the Stern-Gerlach apparatuses. In the general case where the angles are arbitrarily arranged, Deutsch's inequality is violated  

    Systematics of entanglement distribution by separable states

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 92, Issue 3 , 2015 ; 10502947 (ISSN) Karimipour, V ; Memarzadeh, L ; Bordbar, N. T ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We show that three distant parties, A, B, and C, having no prior entanglement can establish a shared GHZ state by mediating two particles which remain separable from each other and from all the other parties throughout the process. The success probability is 1/7. We prove this in a general framework for systematic distribution of entangled states between two and more parties with separable states in d dimensions. The proposed method may facilitate the construction of multinode quantum networks and many other processes which use multipartite entangled states  

    Quantum secret sharing and random hopping: Using single states instead of entanglement

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 92, Issue 3 , September , 2015 ; 10502947 (ISSN) Karimipour, V ; Asoudeh, M ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    Quantum secret sharing (QSS) protocols between N players, for sharing classical secrets, either use multipartite entangled states or use sequential manipulation of single d-level states only when d is prime (A. Tavakoli, arXiv:1501.05582). We propose a sequential scheme which is valid for any value of d. In contrast to A. Tavakoli et al. whose efficiency (number of valid rounds) is 1d, the efficiency of our scheme is 12 for any d. This, together with the fact that in the limit d the scheme can be implemented by continuous variable optical states, brings the scheme into the domain of present day technology  

    Quasi-inversion of qubit channels

    , Article Physical Review A ; Volume 101, Issue 3 , 2020 Karimipour, V ; Benatti, F ; Floreanini, R ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    In general quantum operations, or quantum channels cannot be inverted by physical operations, i.e., by completely positive trace-preserving maps. An arbitrary state passing through a quantum channel loses its fidelity with the input. Given a quantum channel E, we discuss the concept of its quasi-inverse as a completely positive trace-preserving map Eqi which when composed with E increases its average input-output fidelity in an optimal way. The channel Eqi comes as close as possible to the inverse of a quantum channel. We give a complete classification of such maps for qubit channels and provide quite a few illustrative examples. © 2020 American Physical Society  

    Constructing entanglement measures for fermions

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 94, Issue 4 , 2016 ; 10502947 (ISSN) Johansson, M ; Raissi, Z ; Sharif University of Technology
    American Physical Society 
    Abstract
    In this paper we describe a method for finding polynomial invariants under stochastic local operations and classical communication (SLOCC) for a system of delocalized fermions shared between different parties, with global particle-number conservation as the only constraint. These invariants can be used to construct entanglement measures for different types of entanglement in such a system. It is shown that the invariants, and the measures constructed from them, take a nonzero value only if the state of the system allows for the observation of Bell-nonlocal correlations. Invariants of this kind are constructed for systems of two and three spin-12 fermions and examples of maximally entangled... 

    Universal tensor-network algorithm for any infinite lattice

    , Article Physical Review B ; Volume 99, Issue 19 , 2019 ; 24699950 (ISSN) Jahromi, S. S ; Orús, R ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    We present a general graph-based projected entangled-pair state (gPEPS) algorithm to approximate ground states of nearest-neighbor local Hamiltonians on any lattice or graph of infinite size. By introducing the structural matrix, which codifies the details of tensor networks on any graphs in any dimension d, we are able to produce a code that can be essentially launched to simulate any lattice. We further introduce an optimized algorithm to compute simple tensor updates as well as expectation values and correlators with a mean-field-like effective environments. Though not being variational, this strategy allows to cope with PEPS of very large bond dimension (e.g., D=100) and produces...