Loading...
Search for: rate-constants
0.012 seconds
Total 99 records

    Solute-solvent interaction effects on second-order rate constants of reaction between 1-chloro-2,4-dinitrobenzene and aniline in alcohol-water mixtures

    , Article International Journal of Chemical Kinetics ; Volume 37, Issue 2 , 2005 , Pages 90-97 ; 05388066 (ISSN) Harati, M ; Gholami, M. R ; Sharif University of Technology
    2005
    Abstract
    The second-order rate coefficients for aromatic nucleophilic substitution reaction between 1-chloro-2,4-dinitrobenzene and aniline have been measured in aqueous solutions of ethanol and methanol at 25°C. The plots of rate constants versus mole fraction of water show a maximum in all-aqueous solutions. The effect of four empirical solvent parameters including hydrogen bond donor acidity (α), dipolarity/polarizability (π*). normalized polarity (ETN), and solvophobicity (Sp) has been investigated. This investigation has been carried out by means of simple and multiple regression models A dual-parameter equation of log k2 versus Sp and α was obtained in all-aqueous solutions (n = 41, r = 0.962,... 

    Study of the mechanism of methyl iodide decomposition on Cu(110) surface: A UBI-QEP-based approach

    , Article Langmuir ; Volume 17, Issue 3 , 2001 , Pages 583-587 ; 07437463 (ISSN) Azizian, S ; Gobal, F ; Sharif University of Technology
    2001
    Abstract
    The decomposition of methyl iodide on Cu(110) surface gives rise to the production of methane, ethane, and ethene over a wide range of its surface coverage. In this work a reaction mechanism based on the adsorption and subsequent surface dissociation(s) of methyl iodide followed by the recombination and desorption of the surface entities are proposed on the basis of the energetic criteria provided by the unity bond index-quadratic exponential potential method. To further amplify the arguments using the calculated activation energies of the surface reactions, desorptions, etc., the Arrhenius factor is obtained by simulation of the temperature-programmed desorption patterns fitted to the... 

    Solvent effects on kinetics of an heteroatomic nucleophilic substitution reaction in ionic liquid and molecular solvents mixtures

    , Article Russian Journal of Physical Chemistry A ; Volume 87, Issue 12 , December , 2013 , pp 1969-1975 ; 1531-863X Salari, H. (Hadi) ; Pedervand, M. (Mohsen) ; Sadeghzadeh-Darabi, F. (Faramarz) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Rate constants, k A, for the aromatic nucleophilic substitution reaction of 2-chloro-3,5-dinitropyridine with aniline were determined in different compositions of 2-propanol mixed with hexane, benzene, and 2-methylpropan-2-ol and 1-ethyl-3-methylimidazolium ethylsulfate ([Emim][EtSO4]) with dimethyl sulfoxide at 25°C. The obtained rate constants of the reaction in pure solvents are in the following order: 2-methylpropan-2-ol > dimethyl sulfoxide > 2-propanol > hexane > benzene > [Emim][EtSO4]. Molecularmicroscopic solvent parameters corresponding to the selected binary mixtures were utilized to study the kinetics of a nucleophilic substitution reaction in order to investigate and compare the... 

    Application of sol-gel technique to synthesis of copper-cobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects

    , Article Journal of Power Sources ; Vol. 266, issue , 2014 , pp. 79-87 ; ISSN: 03787753 Paknahad, P ; Askari, M ; Ghorbanzadeh, M ; Sharif University of Technology
    Abstract
    The conductive CuCo2O4 spinel coating is applied on the surface of the AISI 430 ferritic stainless steel by the dip-coating sol-gel process and it is evaluated in terms of the microstructure, oxidation resistance and electrical conductivity. The results show that the CuCO2O 4 coating forms a double-layer scale consisting of a Cr, Fe-rich subscale and Cu-Co spinel top layer after 500 h in air at 800 °C. This scale is protective, acts as an effective barrier against Cr migration into the outer oxide layer and alleviates the cathode Cr-poisoning. The oxidation resistance is significantly enhanced by the protective coating with a parabolic rate constant of 5.8 × 10-13 gr2 cm-4 s -1, meanwhile... 

    Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst: Application of the DOE and ANN methodologies

    , Article Journal of Industrial and Engineering Chemistry ; Vol. 20, issue. 4 , July , 2014 , p. 2236-2247 ; ISSN: 1226086X Fattahi, M ; Kazemeini, M ; Khorasheh, F ; Rashidi, A ; Sharif University of Technology
    Abstract
    In this research the application of design of experiment (DOE) coupled with the artificial neural networks (ANN) in kinetic study of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst at 400-500 °C and a method of data collection/fitting for the experiments were presented. The proposed reaction network composed of consecutive and simultaneous reactions with kinetics expressed by simple power law equations involving a total of 20 unknown parameters (10 reaction orders and 5 rate constants each expressed in terms of a pre-exponential factors and activation energies) determined through non-linear regression analysis. Because of the complex nature of the system, neural... 

    Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol-gel technique

    , Article Ceramics International ; Vol. 40, Issue 3 , 2014 , pp. 4193-4201 ; ISSN: 02728842 Naghibi, S ; Faghihi Sani, M. A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    TiO2 nanoparticles were synthesized by hydrothermal assisted sol-gel technique. The preparation parameters including pH value, the amount of water, titanium tetra isopropoxide content, temperature and time of hydrothermal process were investigated by Taguchi statistical experiments to determine the influence of synthesizing variables on the optimal conditions and to realize the highest degree of crystallinity or smallest crystallite size. X-ray diffraction (XRD) analysis and direct band gap energy (Eg) values, measured via diffuse reflectance spectra (DRS), proved that all the samples consist of anatase as a unique phase. Transmission electron microscopy (TEM) and specific surface area... 

    A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode

    , Article Science China Chemistry ; Volume 55, Issue 9 , 2012 , Pages 1819-1824 ; 16747291 (ISSN) Jafarian, M ; Mirzapoor, A ; Danaee, I ; Shahnazi, S. A. A ; Gobal, F ; Sharif University of Technology
    Abstract
    Nickel modified graphite electrodes (G/Ni) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol, ethanol, 1-propanol and 2-propanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were employed. In CV studies, the electrochemical response, peak current varied in the order of MeOH > EtOH > 1-PrOH > 2-PrOH. Under the CA regime, a higher catalytic rate constant obtained for methanol oxidation was in agreement with CV measurements. Lower charge transfer resistance was obtained for low carbon alcohols oxidation and significantly higher... 

    Reaction kinetics investigation of 1-fluoro-2,4-dinitrobenzene with substituted anilines in ethyl acetate-methanol mixtures using linear and nonlinear free energy relationships

    , Article Journal of Physical Organic Chemistry ; Volume 24, Issue 11 , 2011 , Pages 1095-1100 ; 08943230 (ISSN) Jamali Paghaleh, J ; Harifi Mood, A. R ; Gholami, M. R ; Sharif University of Technology
    Abstract
    Aromatic nucleophilic substitution reaction of 1-fluoro-2,4-dinitrobenzene with para-substituted and meta-substituted anilines was kinetically investigated in the mixtures of ethyl acetate and methanol at room temperature. The correlation of second-order rate coefficients with Hammett's substituent constants yields a fairly linear straight line with negative slope in different mole fractions of ethyl acetate-methanol mixtures. The measured rate coefficients of the reaction demonstrated a dramatic variation in ethyl acetate-methanol mixtures with the increasing mole fraction of ethyl acetate. Linear free energy relationship (LFER) investigations confirm that polarity has a major effect on the... 

    In situ derivation of sulfur activated TiO2 nano porous layers through pulse-micro arc oxidation technology

    , Article Materials Research Bulletin ; Volume 46, Issue 10 , 2011 , Pages 1642-1647 ; 00255408 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Molaei, R ; Sharif University of Technology
    Abstract
    Micro arc oxidation technique, as a facile and efficient process, was employed to grow sulfur doped titania porous layers. This research sheds light on the photocatalytic performance of the micro arc oxidized S-TiO2 nano-porous layers fabricated under pulse current. Morphological and topographical studies, performed by SEM and AFM techniques, revealed that increasing the frequency and/or decreasing the duty cycle resulted in formation of finer pores and smoother surfaces. XRD and XPS results showed that the layers consisted of anatase and rutile phases whose fraction was observed to change depending on the synthesis conditions. The highest anatase relative content was obtained at the... 

    Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 36, Issue 11 , 2015 , Pages 1867-1874 ; 02539837 (ISSN) Rostami, T ; Jafarian, M ; Miandari, S ; Mahjani, M. G ; Gobal, F ; Sharif University of Technology
    Abstract
    The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak... 

    Electrooxidation of methanol on NiMn alloy modified graphite electrode

    , Article Electrochimica Acta ; Volume 55, Issue 6 , 2010 , Pages 2093-2100 ; 00134686 (ISSN) Danaee, I ; Jafarian, M ; Mirzapoor, A ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    Abstract
    Nickel and nickel-manganese alloy modified graphite electrodes (G/Ni and G/NiMn) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetery (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were employed. In CV studies, in the presence of methanol NiMn alloy modified electrode shows a significantly higher response for methanol oxidation. The peak current of the oxidation of nickel hydroxide increase is followed by a decrease in the corresponding cathodic current in presence of methanol. The anodic peak currents show linear dependency upon the... 

    Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties

    , Article Surface and Coatings Technology ; Volume 204, Issue 9-10 , 2010 , Pages 1562-1568 ; 02578972 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Sharif University of Technology
    Abstract
    A developed route to form TiO2 self cleaning coatings on polycarbonate substrates is reported. TiO2 coatings on plastics may find widespread application in auto and construction industries if possess desired photocatalytic and mechanical properties. A chemical surface treatment method was used to create hydrophilic groups on the surface. X-ray photoelectron spectroscopy showed the treatment led to the oxidation of surface groups. TiO2 deposition was based on wet coating using an anatase sol of TiO2 nanoparticles of 30 nm size. The sol was synthesized using a sol-gel route. A pre-coat of peroxotitanium complex was employed to improve adhesion and inhibit the substrate degradation. The coating... 

    Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing

    , Article Journal of Molecular Catalysis B: Enzymatic ; Volume 68, Issue 2 , 2011 , Pages 206-210 ; 13811177 (ISSN) Tasviri, M ; Rafiee Pour, H. A ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    Abstract
    A nano-composite material consisting of amine functionalized TiO 2-coated carbon nanotubes was prepared and used for glucose oxidase (GOx) absorption. The GOx bearing nanomaterial was fixed on a glassy carbon electrode to construct a novel biosensor for glucose determination. The direct electrochemistry of immobilized GOx and its electron transfer parameters at the modified glassy carbon electrode were reported. The apparent heterogeneous electron transfer rate constant (ks) of GOx was estimated to be 3.5 s-1, which is higher than those reported previously. Amperometric detection of glucose resulted in a rapid (3 s) and stable response in the linear concentration range from 1.8 to 266 μM.... 

    Photo-degradation of methelyne blue over V2O5- TiO2 nano-porous layers synthesized by micro arc oxidation

    , Article Catalysis Letters ; Volume 134, Issue 1-2 , 2010 , Pages 162-168 ; 1011372X (ISSN) Bayati, M. R ; Golestani Fard, F ; Zaker Moshfegh, A ; Sharif University of Technology
    Abstract
    V2O5-TiO2 porous layers were synthesized via micro-arc oxidation for the first time. The effect of the applied voltage on morphology, composition, and photo-activity of the layers was investigated. The layers, which consisted of anatase, rutile, and vanadium pentoxide phases, revealed an enhanced photo-activity. About 93% of methylene blue solution was degraded on the synthesized layers after 120 min UV-irradiation with a reaction rate constant of k = 0.0228 min-1. The band gap energies of the vanadia-titania and pure titania layers were calculated as 2.56 and 3.39 eV, respectively  

    DM Water Plant Sedimentation as a Cheap and Waste Source of Catalyst for Biodiesel Production

    , Article International Journal of Chemical Reactor Engineering ; Volume 14, Issue 1 , 2016 , Pages 113-124 ; 15426580 (ISSN) Moradi, G ; Mohadesi, M ; Hosseini, S ; Davood Beygi, Y ; Moradi, R ; Sharif University of Technology
    Walter de Gruyter GmbH 
    Abstract
    Transesterification reaction was performed in the presence of soybean oil, methanol, and Demineralized water plant sedimentation catalyst at 60°C for 8 h in this study. Central composite design method was used to study the effect of catalyst concentration and methanol to oil molar ratio on purity and yield of produced biodiesel. The results showed catalyst concentration of 9.08 wt% and methanol to oil molar ratio of 22.49 as the optimum condition in which the values of purity and yield of the produced biodiesel in the second-order models were 99.89% and 81.83%, respectively. Experiments are in good agreement with the mentioned values as corresponded values are 99.95% and 86.68%,... 

    Preparation, magnetic properties, and photocatalytic performance under natural daylight irradiation of Fe3O4-ZnO core/shell nanoparticles designed on reduced go platelet

    , Article Materials Science in Semiconductor Processing ; Volume 72 , 2017 , Pages 85-92 ; 13698001 (ISSN) Ghanbarnezhad, S ; Baghshahi, S ; Nemati, A ; Mahmoodi, M ; Sharif University of Technology
    Abstract
    Ternary mesoporous nanocomposites of RGO/Fe3O4-ZnO were prepared successfully via hydrothermal technique. Fe3O4-ZnO core/shell nanoparticles were decorated on the surface of reduced graphene oxide platelet to improve charge separation efficiency and magnetic properties. The phase, microstructure and specific surface area of the prepared samples were determined via X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy/selected area electron diffraction (TEM/SAED) and Brunauer–Emmett–Teller (BET) techniques. A vibrating sample magnetometer (VSM) was used for recording the magnetization hysteresis curves. The methylene blue (MB)... 

    A quantum chemical study on the OH radical quenching by natural antioxidant fisetin

    , Article Journal of Physical Organic Chemistry ; Volume 30, Issue 11 , 2017 ; 08943230 (ISSN) Bayat, A ; Fattahi, A ; Sharif University of Technology
    Abstract
    In this work, the antioxidant ability of fisetin was explored toward hydroxyl (•OH) radical in aqueous and lipid solution using density functional level of theory. Different reaction mechanisms have been studied: hydrogen atom transfer, single electron transfer followed by proton transfer, and radical adduct formation, and sequential proton loss electron transfer. Rate constants for all possible reaction sites have been calculated using conventional transition state theory in conjunction with the Collins-Kimball theory. Branching ratios for the different channels of reaction are reported for the first time. Results show that the reactivity of fisetin toward hydroxyl (•OH) radical takes place... 

    AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4-nitrophenol: studies of kinetics and mechanism

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 11 , 2017 ; 02682605 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    AgxPt100−x (x = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as-prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO-AgxPt100−x catalysts were applied in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites... 

    Preparation and characterization of a new CdS–NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation

    , Article Research on Chemical Intermediates ; Volume 44, Issue 10 , 2018 , Pages 5953-5979 ; 09226168 (ISSN) Bagherzadeh, M ; Kaveh, R ; Ozkar, S ; Akbayrak, S ; Sharif University of Technology
    Abstract
    In this paper, CdS nanoparticles as a visible light active photocatalyst were coupled by NiFe2O4 and reduced graphene oxide (rGO) to form CdS–NiFe2O4/rGO nanocomposite by facile hydrothermal methods. The CdS–NiFe2O4/rGO nanocomposite shows enhanced photocatalytic activity for the degradation of methylene blue (MB) under visible light illumination. In addition to improved photocatalytic performance, this prepared nanocomposite shows increased photostability and is magnetically separable from the aqueous media. The degradation rate constant (kapp) of the optimized photocatalyst, i.e. CdS–NiFe2O4 (0.05)/rGO 25 wt% nanocomposite, was higher than the corresponding CdS and NiFe2O4 nanoparticles by...