Loading...
Search for: regenerative-chatters
0.006 seconds
Total 22 records

    Adaptive control of regenerative chatter in turning process with tool wear effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 10, Issue PART B , 2010 , pp. 1023-1030 ; ISBN: 9780791843833 Hajikolaei, K. H ; Moradi, H ; Vossoughi, G. R ; Alasty, A ; Movahhedi, M. R ; Sharif University of Technology
    Abstract
    Chatter suppression is of great importance for achieving high precision and surface quality in machining processes. A single degree of freedom model of orthogonal turning process is used to set up the nonlinear delay differential equation of motion. Tool wear effect is considered as the contact force between the workpiece and tool flank surfaces. Uncertainties in parameters of dynamic model and machining conditions are included in the model. An adaptive control strategy is applied for chatter suppression in cutting process. The force provided by a piezoactuator is the control input of the system. Results of stability analysis and adaptive control for two distinct cases of sharp and worn... 

    Stability improvement and regenerative chatter suppression in nonlinear milling process via tunable vibration absorber

    , Article Journal of Sound and Vibration ; Volume 331, Issue 21 , 2012 , Pages 4688-4690 ; 0022460X (ISSN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedy, M. R ; Vossoughi, G ; Sharif University of Technology
    2012
    Abstract
    In this paper, a tunable vibration absorber set (TVAs) is designed to suppress regenerative chatter in milling process (as a semi-active controller). An extended dynamic model of the peripheral milling with closed form expressions for the nonlinear cutting forces is presented. The extension part of the cutting tool is modeled as an Euler-Bernoulli beam with in plane lateral vibrations (x-y directions). Tunable vibration absorbers in x-y directions are composed of mass, spring and dashpot elements. In the presence of regenerative chatter, coupled dynamics of the system (including the beam and x-y absorbers) is described through nonlinear delay differential equations. Using an optimal...