Loading...
Search for: reinforcement
0.025 seconds
Total 738 records

    Experimental investigation of mechanical behavior and microstructural analysis of bagasse fiber-reinforced polypropylene (BFRP) composites to control lost circulation in water-based drilling mud

    , Article Journal of Natural Gas Science and Engineering ; Volume 100 , 2022 ; 18755100 (ISSN) Abdollahi Khoshmardan, M ; Jafari Behbahani, T ; Ghotbi, C ; Nasiri, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    During the drilling operation in high-permeability, natural and artificial fractured formations, the lost circulation of drilling mud is a common problem. Various methods have been applied to control lost circulation and among these methods, using Lost Circulation Materials (LCM) is the most common method that blocks the fluid loss channels in the formation by creating structures. In this project, the aim is to develop and use natural fiber-reinforced composites as LCM can be an innovative and technical solution. Natural fiber-reinforced composites have excellent properties such as high specific strength, non-abrasive, eco-friendly, and biodegradability. It seems to be possible that... 

    Failure modes of RC structural elements and masonry members retrofitted with fabric-reinforced cementitious matrix (FRCM) system: a review

    , Article Buildings ; Volume 12, Issue 5 , 2022 ; 20755309 (ISSN) Irandegani, M. A ; Zhang, D ; Shadabfar, M ; Kontoni, D. P. N ; Iqbal, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Much research has been conducted and published on the examination of the behavior of reinforced steel and concrete structures with a FRP system. Nevertheless, the performance of FRP differs from that of FRCM, particularly at high temperature and ultimate strength. The present study provides a review of previous research on structural elements (viz. beams, columns, arches, slabs, and walls) retrofitted with FRCM systems, taking account of various parameters, such as layers, composite types, configurations, and anchors for controlling or delaying failure modes (FMs). Additionally, this paper discussed the details of different FMs observed during experimental tests, such as crushed concrete or... 

    Partly semiconductor covered vane fast magnetron

    , Article IEEE Transactions on Plasma Science ; Volume 50, Issue 5 , 2022 , Pages 1179-1187 ; 00933813 (ISSN) Hashemi, S. M. A ; Hashemi, S. M. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Alterations in the structure of a magnetron, e.g., the A6 relativistic magnetron, are proposed, which considerably increase the device's build-up speed. We cover the magnetron vane surfaces with semiconductor layers of nonzero electric conductivity, with an exact geometrical design. Semiconductor layers with considerable mechanical strength also provide excellent shielding for the vanes against the high-energy relativistic electrons' bombardment. The novel structure introduces several new free parameters to the magnetron design procedure and considerably increases the design flexibility. A multistage exact optimization procedure, performed by extensive computer simulations, shows that... 

    Spatial analysis of damage evolution in cyclic-loaded reinforced concrete shear walls

    , Article Journal of Building Engineering ; Volume 49 , 2022 ; 23527102 (ISSN) Asjodi, A. H ; Dolatshahi, K. M ; Ebrahimkhanlou, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper introduces a probabilistic framework to quantify the spatial distribution of cracking and crushing in rectangular reinforced concrete shear walls at different drift ratios. In this research, a comprehensive probabilistic spatial analysis is conducted on an extensive collected database of reinforced concrete shear walls tested under the quasi-static cyclic loading. The database includes 235 images of 72 damaged walls with various geometry and material properties at different drift ratios between 0.0 and 4.0%. Various image processing filters are implemented to the images to highlight the wall areas that are more prone to cracking and crushing. Then, advanced statistical analysis is... 

    Magnetic, Electrical, and physical properties evolution in fe3o4 nanofiller reinforced aluminium matrix composite produced by powder metallurgy method

    , Article Materials ; Volume 15, Issue 12 , 2022 ; 19961944 (ISSN) Ashrafi, N ; Ariff, A. H. M ; Jung, D.-W ; Sarraf, M ; Foroughi, J ; Sulaiman, S ; Hong, T. S ; Sharif University of Technology
    MDPI  2022
    Abstract
    An investigation into the addition of different weight percentages of Fe3O4 nanoparticles to find the optimum wt.% and its effect on the microstructure, thermal, magnetic, and electrical properties of aluminum matrix composite was conducted using the powder metallurgy method. The purpose of this research was to develop magnetic properties in aluminum. Based on the obtained results, the value of density, hardness, and saturation magnetization (Ms) from 2.33 g/cm3, 43 HV and 2.49 emu/g for Al-10 Fe3O4 reached a maximum value of 3.29 g/cm3, 47 HV and 13.06 emu/g for the Al-35 Fe3O4 which showed an improvement of 41.2%, 9.3%, and 424.5%, respectively. The maximum and minimum coercivity (Hc) was... 

    Experimental and numerical investigation of minimum required fiber content in bending characteristics of 100 MPa UHPC-formulated concrete

    , Article Case Studies in Construction Materials ; Volume 16 , 2022 ; 22145095 (ISSN) Kamjou, A. S ; Khaloo, A ; Hassanpour, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present study investigates the lowest possible amount of steel and polypropylene fibers in improving the compressive and flexural strength, stiffness, and energy capacity of high strength 100 MPa concrete with a mix design similar to that of Ultra-High Performance Concrete (UHPC). Twenty-eight 100 × 200 mm cylindrical specimens with 0%, 0.2%, 0.4%, and 0.6% volumetric percentage of short steel fibers and polypropylene fibers were fabricated, which were at the lowest predicted percentages with respect to fiber content recommended in the literature. To assess the flexural performance of fiber-reinforced concrete panels, specimens with dimensions of 200 × 600 × 20 mm were made with the same... 

    Effects of support conditions and arrangement of prestressed rocking columns on the displacement of concrete frames under dynamic loads

    , Article Bulletin of Earthquake Engineering ; Volume 20, Issue 8 , 2022 , Pages 4175-4212 ; 1570761X (ISSN) Khodabakhshi, N ; Khaloo, A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this paper, the effects of rocking and fixed base prestressed columns and conventional reinforced concrete columns on the response of frames are investigated. Also, the influence of some selected rocking base prestressed columns on the response of the concrete frame was studied. Three types of a concrete frame with conventional Reinforced Concrete columns, rocking, and fixed base prestressed columns were modeled using the finite element method in Opensees software. The details of the simulation of the rocking and fixed base columns in Opensees are described precisely. The results obtained from the models were compared with those of the literature to evaluate the validity of the results.... 

    Experimental and probabilistic investigation on the durability of geopolymer concrete confined with fiber reinforced polymer

    , Article Construction and Building Materials ; Volume 334 , 2022 ; 09500618 (ISSN) Anvari, M ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigates the durability of confined geopolymer concrete with fiber-reinforced polymer and compares the results with ordinary Portland cement concrete (OPCC). Two hundred and seventy geopolymer concrete (GPC) specimens with different mix designs (fly ash- and granulated blast furnace slag(GBFS)-based GPC) were prepared and then wrapped with two different fiber-reinforced polymers (carbon and glass FRPs). For 12,960 hrs (eighteen months), the specimens were exposed to four different pHs (2.5, 7 (water), 7.25 (saltwater), 12.5). The reliability analysis was performed after modeling the compressive strength over time. Based on the results, the ductility of all specimens decreased... 

    Evaluation of whisker alignment and anisotropic mechanical properties of ZK60 alloy reinforced with SiCw during KOBO extrusion method

    , Article Journal of Manufacturing Processes ; Volume 84 , 2022 , Pages 344-356 ; 15266125 (ISSN) Liu, S ; Wang, Y ; Yarigarravesh, M ; Tayyebi, M ; Tayebi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In current study, microstructure and high-temperature mechanical properties of ZK60 magnesium alloy reinforced by SiC whiskers were investigated after casting, the KOBO extrusion and aging processes. For this purpose, ZK60/SiCw composite specimens were prepared by stir casting technique. In order to achieve a laminar structure and improve the strength, the samples were subjected to KOBO extrusion technique and precipitation hardening, resulting in improved strength and increased ductility. The former is due to grain refining and formation of precipitates in the microstructure, while the latter is attributed to grain refining and formation of laminar structure. To evaluate the strength of the... 

    Peak drift ratio estimation for unreinforced masonry walls using visual features of damage

    , Article Bulletin of Earthquake Engineering ; Volume 20, Issue 15 , 2022 , Pages 8357-8379 ; 1570761X (ISSN) Asjodi, A. H ; Dolatshahi, K. M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    This study proposes predictive equations for estimating the peak-experienced drift ratio of unreinforced masonry walls based on the visual characteristic of the damages. In this regard, a comprehensive database comprised of 190 images associated with 30 unreinforced masonry walls at different drift ratios between 0.0 and 1.1 percent is collected, and the visual features of the progressive damages are extracted. Various image processing filters are implemented to the images to quantify the cracking length and crushing areas. The filters are capable of distinguishing different crack patterns, such as joint cracking and block cracking. In the following, four scenarios are introduced based on... 

    Computation offloading strategy for autonomous vehicles

    , Article 27th International Computer Conference, Computer Society of Iran, CSICC 2022, 23 February 2022 through 24 February 2022 ; 2022 ; 9781665480277 (ISBN) Farimani, M. K ; Karimian Aliabadi, S ; Entezari Maleki, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Vehicular edge computing is a progressing technology which provides processing resources to the internet of vehicles using the edge servers deployed at roadside units. Vehicles take advantage by offloading their computationintensive tasks to this infrastructure. However, concerning time-sensitive applications and the high mobility of vehicles, cost-efficient task offloading is still a challenge. This paper establishes a computation offloading strategy based on deep Q-learning algorithm for vehicular edge computing networks. To jointly minimize the system cost including offloading failure rate and the total energy consumption of the offloading process, the vehicle tasks offloading problem is... 

    Firtual hardware-in-the-loop FMU CO-simulation based digital twins for heating, ventilation, and air-conditioning (HVAC) systems

    , Article IEEE Transactions on Emerging Topics in Computational Intelligence ; 2022 , Pages 1-11 ; 2471285X (ISSN) Abrazeh, S ; Mohseni, S ; Zeitouni, M. J ; Parvaresh, A ; Fathollahi, A ; Gheisarnejad, M ; Khooban, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, a novel self-adaptive control method based on a digital twin is developed and investigated for a multi-input multi-output (MIMO) nonlinear system, which is a heating, ventilation, and air-conditioning system. For this purpose, hardware-in-loop (HIL) and software-in-loop (SIL) are integrated to develop the digital twin control concept in a straightforward manner. A nonlinear integral backstepping (NIB) model-free control technique is integrated with the HIL (implemented as a physical controller) and SIL (implemented as a virtual controller) controllers to control the HVAC system without the need for dynamic feature identification. The main goal is to design the virtual... 

    Neural network-based flight control systems: Present and future

    , Article Annual Reviews in Control ; Volume 53 , 2022 , Pages 97-137 ; 13675788 (ISSN) Emami, S.A ; Castaldi, P ; Banazadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    As the first review in this field, this paper presents an in-depth mathematical view of Intelligent Flight Control Systems (IFCSs), particularly those based on artificial neural networks. The rapid evolution of IFCSs in the last two decades in both the methodological and technical aspects necessitates a comprehensive view of them to better demonstrate the current stage and the crucial remaining steps towards developing a truly intelligent flight management unit. To this end, in this paper, we will provide a detailed mathematical view of Neural Network (NN)-based flight control systems and the challenging problems that still remain. The paper will cover both the model-based and model-free... 

    Investigating the performance of geogrid reinforced unbound layer using light weight deflectometer (LWD)

    , Article International Journal of Pavement Research and Technology ; Volume 15, Issue 1 , 2022 , Pages 173-183 ; 19966814 (ISSN) Sabouri, M ; Khabiri, S ; Asgharzadeh, S. M ; Abdollahi, S. F ; Sharif University of Technology
    Springer  2022
    Abstract
    This study investigates the performance of geogrid-reinforced unbound pavement layer. In this study, geogrid was used in various layouts and numbers using three different gradation of granular materials. Light weight deflectometer (LWD) device is known as a useful tool to evaluate the stiffness of unbound pavement layers. In this study, the LWD was utilized to experimentally investigate factors affecting the performance of geogrid reinforcement, including the number of geogrids, geogrid layout, and the gradation of unbound layer. There are several parameters which affect the LWD test results including the hammer weight, the falling height, and the surface stress. The effect of these... 

    On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: Perturbation technique

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 6 , 2022 , Pages 2124-2146 ; 15397734 (ISSN) Taati, E ; Borjalilou, V ; Fallah, and, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Based on the first-order shear deformation (FSD) model and nonlocal elasticity theory, the simultaneous effects of shear and small scale on the nonlinear vibration behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams are investigated for the first time. To this end, the governing equations of bending and stretching with von Kármán geometric nonlinearity are decoupled into one fourth-order partial differential equation in terms of transverse deflection. A closed-form solution of the nonlinear natural frequency, which can be used in conceptual design and optimization algorithms of FG- CNTRC beams with different boundary conditions, is developed using a hybrid... 

    Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 4 , 2022 , Pages 1331-1353 ; 15397734 (ISSN) Jermsittiparsert, K ; Ghabussi, A ; Forooghi, A ; Shavalipour, A ; Habibi, M ; won Jung, D ; Safa, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Due to the remarkable progress in the field of the manufacturing process, smart composites have become the desired target for high-tech engineering applications. Accordingly, for the first time, thermal buckling, critical voltage and vibration response of a thermally affected graphene nanoplatelet reinforced composite (GPLRC) microdisk in the thermal environment are explored with the aid of generalized differential quadrature method (GDQM). Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin-Tsai micromechanics is used to acquire the elasticity of the structure, whereas, the variation of thermal expansion, Poisson’s ratio, and density... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 2 , 2022 , Pages 509-536 ; 15397734 (ISSN) Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Stiffness and strength estimation of damaged unreinforced masonry walls using crack pattern

    , Article Journal of Earthquake Engineering ; Volume 26, Issue 2 , 2022 , Pages 837-856 ; 13632469 (ISSN) Dolatshahi, K. M ; Beyer, K ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    After an earthquake, the residual stiffness and strength of structural elements are typically estimated based on a qualitative visual inspection of cracks that is prone to error. In this paper a new approach is proposed to automatically estimate the updated stiffness and strength of damaged unreinforced masonry walls by characterization of crack patterns by a mathematical index. It is shown that structural and textural fractal dimensions of a crack pattern reflect the extent of cracking and the type of cracking or crushing, i.e., whether the cracks pass through joints or whether bricks have been damaged and crushed. Using results of six quasi-static cyclic tests on unreinforced brick masonry... 

    Effectively exerting the reinforcement of polyvinyl alcohol nanocomposite hydrogel via poly(dopamine) functionalized graphene oxide

    , Article Composites Science and Technology ; Volume 217 , 2022 ; 02663538 (ISSN) Famkar, E ; Pircheraghi, G ; Nazockdast, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Nature-inspired coating with polydopamine (PDA) is a promising way to improve the performance of graphene oxide (GO) based nanocomposites due to its high ability to enhance interactions in matrix-disperse systems. Here, we examined the capability of two types of PDA to develop the reinforced polyvinyl alcohol (PVA)/GO hydrogels. In the first mode, dopamine hydrochloride was polymerized as nanoparticles and then incorporated into PVA solution with GO nanoplatelets (P-NG hydrogel). In the second mode, polydopamine was polymerized in the presence of GO nanoparticles to obtain PDA surface-modified GO and then PVA nanocomposite hydrogel (P-CG sample). Rheological and tensile findings revealed... 

    Subsonic and supersonic flow-induced vibration of sandwich cylindrical shells with FG-CNT reinforced composite face sheets and metal foam core

    , Article International Journal of Mechanical Sciences ; Volume 215 , 2022 ; 00207403 (ISSN) Taati, E ; Fallah, F ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Based on the linear fluid-solid interaction (FSI) model and classical shell theories, vibration behavior of sandwich cylindrical shells subjected to external incompressible or compressible fluid flow is investigated. The sandwich shell includes the same outer and inner face sheets made of carbon nanotube (CNT) reinforced composites and a metal foam core. The effective mechanical properties of CNT reinforced composites are obtained using the extended rule of mixture. Also, the porosity distribution through the foam thickness is assumed to be in the form of a trigonometric function. Equations of motion and corresponding boundary conditions are derived according to the Donnell's, Love's and...