Loading...
Search for: rotating-disks
0.006 seconds
Total 54 records

    CFD Simulation of Rotating Disk Apparatus for Obtaining Reaction Rate of HCl and Carbonate Minerals

    , M.Sc. Thesis Sharif University of Technology Rabiee, Amir Hossein (Author) ; Shad, Saeed (Supervisor) ; Bazargan, Mohammad (Supervisor)
    Abstract
    Today, acidizing is one of the most important methods for stimulation and increasing the productivity of oil and gas wells. In Iran and other oil-rich countries, a large amount of money is invested every year in acidizing operations. Due to complex nature of acidizing of an oil formation, it’s very difficult to design an optimized and successful operation. Therefore, many research projects have been performed for understanding the physics of the dissolution of reservoir rock by acid and the behavior of wormholes and secondary reactions. The most important prerequisite of these researches is the perfect knowledge of acid and mineral reaction kinetics. One of the most common experiments to... 

    Analysis of Micro Rotating Disk with Angular Acceleration Based on the Non-Classical Continuum Mechanics

    , M.Sc. Thesis Sharif University of Technology Bagheri, Emadoddin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Incapability of the classical continuum mechanics theory to justify the experimental observations of the mechanical response of the small-scale structures and parts motivated the researchers to pursue the introduction and utilization of the non-classical continuum theories for analysis and design of such structures and parts. In this paper, utilizing the modified couple stress theory and the strain gradient theory as well-known and powerful non-classical continuum theories, the mechanical response, including the displacement and stress fields, for micro-rotating disks with angular acceleration is investigated. The governing differential equations of motion and the corresponding boundary... 

    In-plane and transverse eigenmodes of high-speed rotating composite disks

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 80, Issue 1 , 2013 ; 00218936 (ISSN) Dousti, S ; Abbas Jalali, M ; Sharif University of Technology
    2013
    Abstract
    We apply Hamilton's principle and model the coupled in-plane and transverse vibrations of high-speed spinning disks, which are fiber-reinforced circumferentially. We search for eigenmodes in the linear regime using a collocation scheme, and compare the mode shapes of composite and isotropic disks. As the azimuthal wavenumber varies, the radial nodes of in-plane waves are remarkably displaced in isotropic disks while they resist such displacements in composite disks. The reverse of this phenomenon happens for transversal waves and the radial nodes move toward the outer disk edge as the azimuthal wavenumber is increased in composite disks. This result is in accordance with the predictions of... 

    Thermo-mechanical analysis of rotating disks with non-uniform thickness and material properties

    , Article International Journal of Pressure Vessels and Piping ; Volume 98 , October , 2012 , Pages 95-101 ; 03080161 (ISSN) Hassani, A ; Hojjati, M. H ; Mahdavi, E ; Alashti, R. A ; Farrahi, G ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Theoretical and numerical analyses of rotating disks with non-uniform thickness and material properties subjected to thermo-mechanical loadings have been carried out by variable material properties (VMP), Runge-Kutta's (RK) and finite element (FE) methods. The material is assumed to be elastic-linear hardening. A power form function is used to describe the temperature gradient with the higher temperature at outer surface. Von-Mises theory has been used as failure criterion. The effects of geometry, material and thermal loading parameters as well as boundary conditions on radial, hoop and equivalent stress distributions which have not been studied in much detail in previous works have been... 

    Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion

    , Article Advanced Powder Technology ; Volume 27, Issue 2 , March , 2016 , Pages 564–574 ; 09218831 (ISSN) Saidi, M. H ; Tamim, H ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this study, the unsteady three dimensional nanofluid flow, heat and mass transfer in a rotating system in the presence of an externally applied uniform vertical magnetic field is investigated. This study has different applications in rotating magneto-hydrodynamic (MHD) energy generators for new space systems and also thermal conversion mechanisms for nuclear propulsion space vehicles. The important effects of Brownian motion and thermophoresis have been included in the model of nanofluid. The governing equations are non-dimensionalized using geometrical and physical flow field-dependent parameters. The velocity profiles in radial, tangential and axial directions, pressure gradient,... 

    Numerical simulation of turbulent heat transfer on a rotating disk with an impinging jet

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 2 , 2010 , Pages 627-631 ; 9780791849163 (ISBN) Saidi, M. H ; Karrabi, H ; Avval, H. B ; Asgarshamsi, A ; Sharif University of Technology
    Abstract
    A numerical study has been carried out to investigate the fluid flow structure and convective heat transfer due to a circular jet impinging on a rotating disk. The temperature distribution and convection heat transfer coefficient on the disk are calculated. Flow is considered to be steady, incompressible and turbulent. k-e RNG model is used to model the turbulent flow. Two new criteria are introduced and used to evaluate the performance of cooling process which are maximum temperature difference on the disk and the average temperature of the disk. The first parameter shows the uniformity of temperature distribution in the disk and the second shows the effect of both thermo physical... 

    A three-dimensional elasticity solution for functionally graded rotating disks

    , Article Composite Structures ; Volume 92, Issue 5 , 2010 , Pages 1092-1099 ; 02638223 (ISSN) Asghari, M ; Ghafoori, E ; Sharif University of Technology
    2010
    Abstract
    A semi-analytical three-dimensional elasticity solution for rotating functionally graded disks for both of hollow and solid disks is presented. The aim is to generalize an available two-dimensional plane-stress solution to a three-dimensional one. Although for the thin disks problems the two-dimensional solution provides appropriate results, for the thick disks, a three-dimensional elasticity solution should be considered to avoid poor results. It is shown that although the plane-stress solution satisfies all the governing three-dimensional equations of motion and boundary conditions, it fails to give a compatible three-dimensional strain field. A valid three-dimensional solution has been... 

    Continuous synthesis of barium sulfate nanoparticles in a new high-speed spinning disk reactor

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 36 , 2019 , Pages 16597-16609 ; 08885885 (ISSN) Jahanshahi Anboohi, J ; Molaei Dehkordi, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    A new high-speed spinning disk reactor (HSSDR) was proposed and tested successfully. In this regard, barium sulfate (BaSO4) nanoparticles were synthesized using reactive crystallization processes. In this reactor, the rotational disk speed was varied from 5000 to 15 000 rpm. The effects of various design and operating parameters such as the rotational disk speed, feed entrance radius, volumetric flow rate of feed solutions, supersaturation, and free ion ratio were investigated in detail. The mean particle size (MPS) and specifications of the synthesized barium sulfate were investigated using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy and powder X-ray... 

    An improved actuator disc model for the numerical prediction of the far-wake region of a horizontal axis wind turbine and its performance

    , Article Energy Conversion and Management ; Volume 185 , 2019 , Pages 482-495 ; 01968904 (ISSN) Behrouzifar, A ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Actuator disc models are frequently used to provide a semi-analytical approach to estimating aerodynamic loads on rotary blades. The basic idea is to distribute the aerodynamic loads on a virtual rotating disc instead of simulating the actual rotating blade. These loads are then imposed to represent the source terms of the Navier-Stokes equations, which can be solved numerically using the computational fluid dynamic methods. The thickness of the actuator disk grid is one important factor considerably affecting calculations of the wind turbine rotor. Past researches generally considered the idea of fixed grid thickness exerting along the blade in their actuator disk modeling. However, this... 

    Enhancing the vanadium extraction performance using synergistic mixtures of d2ehpa and tbp in rdc column with the perforated structure; case study: evaluation probability density functions

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 166 , 2021 ; 02552701 (ISSN) Shakib, B ; Torkaman, R ; Torab Mostaedi, M ; Asadollahzadeh, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The reactive extraction behavior on the mean drop size and distribution for synergistic extraction of vanadium from sulfate medium with di-(2-ethylhexyl) phosphoric acid (D2EHPA) and its mixture with tributyl phosphate (TBP) in kerosene has been interpreted in the modified rotating disc contactor column. In batch experiments, the maximum extraction efficiency was obtained in the single extraction system with 0.29 molar D2EHPA at an equilibrium pH of 2, whereas the extraction percentage was significantly increased by adding 0.3 molar TBP into the same D2EHPA concentration due to the synergistic effect. The solvent extraction process has been optimized by applying the central composition... 

    Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem

    , Article Engineering with Computers ; Volume 38 , 2022 , Pages 4163-4179 ; 01770667 (ISSN) Huang, X ; Hao, H ; Oslub, K ; Habibi, M ; Tounsi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In the current paper, vibrational and critical circular speed characteristics of a functionally graded (FG) rotary microdisk is examined considering a continuum nonlocal model called modified couple stress (MCS) model, for the first time in the literature. The generalized differential quadrature (GDQ) approach and variational method are used for deriving and solving the non-classical final relations. The FG size-dependent micro-sized disk’s final relations and corresponding boundary conditions (BCs) are achieved on the basis of the higher-order shear deformation (HSD) model. Then, a parametric analysis has been conducted to analyze the influences of the length scale factor, circumferential,... 

    Geometrical optimization of half toroidal continuously variable transmission using particle swarm optimization

    , Article Scientia Iranica ; Volume 18, Issue 5 , 2011 , Pages 1126-1132 ; 10263098 (ISSN) Delkhosh, M ; Saadat Foumani, M ; Boroushaki, M ; Ekhtiari, M ; Dehghani, M ; Sharif University of Technology
    Abstract
    The objective of this research is geometrical optimization of half toroidal Continuously Variable Transmission (CVT) in order to achieve high power transmission efficiency. The dynamic analysis of CVT is implemented and contact between the disk and the roller is modeled viaelastohydrodynamic (EHL) lubrication principles. Computer model is created using geometrical, thermal and kinetic parameters to determine the efficiency of CVT. Results are compared by other models to confirm the model validity. Geometrical parameters are obtained by means of Particle Swarm Optimization (PSO) algorithm, while the optimization objective is to maximize the power transmission efficiency. Optimization was... 

    Nonlinear thermoelastic stress analysis of the rotating FGM disk with variable thickness and temperature-dependent material properties using finite element method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 14 , 2010 , Pages 359-364 ; 9780791843871 (ISBN) Azadi, M ; Damircheli, M ; Sharif University of Technology
    Abstract
    In this paper, nonlinear radial and hoop thermoelastic stress analysis of rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using the finite element method. In this method, one-dimensional second order elements with three nodes have been used. The geometrical and boundary conditions are in the shape of nonexistence of the pressure (zero radial stress) in both external and internal layers and zero displacement at the internal layer of rotating disk. Furthermore, it's assumed that heat distribution is as second order curve while material properties such as elasticity modulus, Poisson's ratio and thermal expansion coefficient vary by using a... 

    Synthesis-structure-performance correlation for poly-aniline-Me-C non-precious metal cathode based on mesoporous carbon catalysts for oxygen reduction reaction in low temperature fuel cells

    , Article Renewable Energy ; Volume 77 , 2015 , Pages 558-570 ; 09601481 (ISSN) Hamzehie, M. E ; Samiee, L ; Fattahi, M ; Seifkordi, A. A ; Shoghi, F ; Maghsodi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this work, attempt is made to development of active non-precious metal catalysts (NPMCs) for the oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) based on the heat treatment of poly-aniline/transition metal/carbon precursors. All the materials have been characterized by X-ray diffraction (XRD) small and wide angle, N2 adsorption-desorption isotherms, high-resolution transmission electron microscopy (TEM), Scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). Moreover for electrochemical evaluation of samples, Rotating Disk electrode (RDE) technique and Fuel Cell test were employed. The results showed that onset potential for the optimized...