Loading...
Search for:
scaffolds--biology
0.008 seconds
Total 80 records
Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review
, Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
Taylor and Francis Inc
2018
Abstract
Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of...
Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing
, Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
Elsevier B.V
2018
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally...
Natural compounds for skin tissue engineering by electrospinning of nylon-Beta vulgaris
, Article ASAIO Journal ; Volume 64, Issue 2 , 2018 , Pages 261-269 ; 10582916 (ISSN) ; Mahmoudifard, M ; Kehtari, M ; Babaie, A ; Hamedi, S ; Mirzaei, S ; Soleimani, M ; Hosseinzadeh, S ; Sharif University of Technology
Lippincott Williams and Wilkins
2018
Abstract
Natural compounds containing polysaccharide ingredients have been employed as candidates for treatment of skin tissue. Herein, for the first time, electrospinning setup was proposed to fabricate an efficient composite nanofibrous structure of Beta vulgaris (obtained from Beet [Chenopodiaceae or Amaranthaceae]) belonged to polysaccharides and an elastic polymer named nylon 66 for skin tissue engineering. Both prepared scaffolds including noncomposite and composite types were studied by Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical assay, and contact angle. Scanning electron microscope examinations have approved the uniform and homogeneous...
Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration
, Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 45, Issue 5 , 2017 , Pages 928-935 ; 21691401 (ISSN) ; Dadbin, S ; Frounchi, M ; Rajabi, S ; Sharif University of Technology
Taylor and Francis Ltd
2017
Abstract
Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the...
A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering
, Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) ; Hajiali, F ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites...
Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications
, Article Starch/Staerke ; Volume 68, Issue 11-12 , 2016 , Pages 1275-1281 ; 00389056 (ISSN) ; Shahriarpanah, S ; Asadzadehzanjani, N ; Khaleghpanah, S ; Heidari, S ; Sharif University of Technology
Wiley-VCH Verlag
2016
Abstract
The formation of biomimetic bone-like apatite layers throughout the biopolymer-based hydrogel scaffold is an attractive approach in bone tissue engineering. Here, the starch scaffold was prepared using a combination of particulate leaching and freeze-drying techniques. The fabricated structures were then modified by citric acid to investigate the formation of bone-like apatite layer on the porous citrate-based scaffold after soaking in simulated body fluid (SBF). The Fourier Transform Infrared (FTIR) spectra and X-ray diffraction (XRD) patterns revealed that the B-type carbonated apatite has successfully deposited on the scaffold after immersing in SBF for 28 days. Indeed, high chemical...
Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system
, Article Journal of Materials Chemistry B ; Volume 4, Issue 19 , 2016 , Pages 3169-3190 ; 20507518 (ISSN) ; Sharif University of Technology
Royal Society of Chemistry
2016
Abstract
Although graphene/stem cell-based tissue engineering has recently emerged and has promisingly and progressively been utilized for developing one of the most effective regenerative nanomedicines, it suffers from low differentiation efficiency, low hybridization after transplantation and lack of appropriate scaffolds required in implantations without any degrading in functionality of the cells. In fact, recent studies have demonstrated that the unique properties of graphene can successfully resolve all of these challenges. Among various stem cells, neural stem cells (NSCs) and their neural differentiation on graphene have attracted a lot of interest, because graphene-based neuronal tissue...
An alternative mechanism for the formation of high density lipoprotein in peripheral tissue
, Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 600-608 ; 10263098 (ISSN) ; Saidi, M. S ; Rismanian, M ; Firoozabadi, B ; Amininasab, M ; Sharif University of Technology
Sharif University of Technology
2016
Abstract
High Density Lipoprotein (HDL) is a lipid-protein complex responsible for transporting cholesterol and triglyceride molecules, as these compounds are unable to dissolve in aqueous environments such as a bloodstream. Among the most well-known possible structures, the belt-like structure is the most common shape proposed for this vital bimolecular complex. In this structure, the protein scaffold encompasses the lipid bilayer and a planar circular structure is formed. Several HDL simulations with embedded components in the lipid section were performed. Here, we applied a series of molecular dynamic simulations using the MARTINI coarse grain force field to investigate an HDL model, with pores of...
Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration
, Article Artificial Cells, Nanomedicine and Biotechnology ; 2016 , Pages 1-8 ; 21691401 (ISSN) ; Dadbin, S ; Frounchi, M ; Rajabi, S ; Sharif University of Technology
Taylor and Francis Ltd
2016
Abstract
Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the...
Influence of Fe3O4 nanoparticles in hydroxyapatite scaffolds on proliferation of primary human fibroblast cells
, Article Journal of Materials Engineering and Performance ; 2016 , Pages 1-9 ; 10599495 (ISSN) ; Aghaie, E ; Nadernezhad, A ; Zargarzadeh, M ; Khakzad, A ; Shakeri, M. S ; Beygi Khosrowshahi, Y ; Siadati, M. H ; Sharif University of Technology
Springer New York LLC
2016
Abstract
Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of...
The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets
, Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
Institute of Physics Publishing
2016
Abstract
Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were...
Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses
, Article Materials and Design ; Volume 88 , 2015 , Pages 924-931 ; 02641275 (ISSN) ; Simchi, A ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Design and development of biodegradable scaffolds with highly uniform and controlled internal structure that stimulate tissue regeneration are the focus of many studies. The aim of this work is to apply a modified three-dimensional (3D) printing process to fabricate polymer-matrix composites with controlled internal architecture. Computationally-designed plaster molds with various pore sizes in the range of 300-800. μm were prepared by employing 3D printing of a water-based binder. The molds were converted to ε-polycaprolactone (PCL) and PCL/bioactive glass (BG) composite scaffolds by solvent casting and freeze drying methods. Optical and electron microscopy studies revealed that the pore...
Chitosan-gelatin sheets as scaffolds for muscle tissue engineering
, Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 43, Issue 2 , Nov , 2015 , Pages 124-132 ; 21691401 (ISSN) ; Mashayekhan, S ; Nazaripouya, A ; Naji, M ; Hunkeler, D ; Rajabi Zeleti, S ; Sharifiaghdas, F ; Sharif University of Technology
Informa Healthcare
2015
Abstract
Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate...
Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds
, Article Materials Science and Engineering C ; Volume 48 , March , 2015 , Pages 384-390 ; 09284931 (ISSN) ; Aboutalebi Anaraki, N ; Irani, M ; Roshanfekr Rad, L ; Shamshiri, S ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7 wt.%) indicated that the minimum diameter of nanofibers was found to be 85 nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH 5.3 and 7.4 indicated strong pH dependence. The...
Design, fabrication, and characterization of novel porous conductive scaffolds for nerve tissue engineering
, Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 64, Issue 18 , 2015 , Pages 969-977 ; 00914037 (ISSN) ; Ahmad Ramazani, S. A ; Mashayekhan, S ; Farani, M. R ; Ghaderinezhad, F ; Dabaghi, M ; Sharif University of Technology
Taylor and Francis Inc
2015
Abstract
Highly conductive polypyrrole/graphene (PYG) nanocomposite was synthesized with chemical oxidation process via emulsion polymerization and used for the preparation of novel porous conductive gelatin/chitosan-based scaffolds. The effect of PYG loading on various properties of scaffolds was investigated. The obtained results indicated that by introducing PYG into the polymeric matrix, the porosity and swelling capacity decreased while electrical conductivity and Young's modulus demonstrated increasing trend. The in vitro biodegradation test revealed that pure gelatin/chitosan matrix lost 80% of its weight after six weeks in the presence of lysozyme whilst the biodegradation rate was...
Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery
, Article Journal of Applied Polymer Science ; Volume 132, Issue 3 , August , 2015 ; 00218995 (ISSN) ; Rad, L. R ; Irani, M ; Haririan, I ; Sharif University of Technology
John Wiley and Sons Inc
2015
Abstract
In the present study, polylactic acid (PLA)/polyethylene glycol (PEG)/multiwalled carbon nanotube (MWCNT) electrospun nanofibrous scaffolds were prepared via electrospinning process and their applications for the anticancer drug delivery system were investigated. A response surface methodology based on Box-Behnken design (BBD) was used to evaluate the effect of key parameters of electrospinning process including solution concentration, feeding rate, tip-collector distance (TCD) and applied voltage on the morphology of PLA/PEG/MWCNT nanofibrous scaffolds. In optimum conditions (concentration of 8.15%, feeding rate of 0.2 mL/h, voltage of 18.50 kV and TCD of 13.0 cm), the minimum experimental...
Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture
, Article Diamond and Related Materials ; Volume: 40 , 2013 , Pages: 107-114 ; 09259635 (ISSN) ; Shokrgozar, M. A ; Mehrjoo, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
2013
Abstract
Recently, nanodiamonds have attracted interest in biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds, and biosensors. We incorporated diamond nanoparticles in alginate-bioactive glass films by electrophoretic process to prepare functional coatings for biomedical implants. Turbidity examination by time-resolved laser transmittance measurement revealed that a stable multi-component aqueous suspension of alginate, bioactive glass and diamond particles could be obtained at concentrations of 0.6, 1.3, and 0.65 g/l, respectively. Uniform films with ~ 5 μm thickness were deposited on 316 stainless steel foils by employing constant field...
Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces
, Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
2013
Abstract
Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were...
In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process
, Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) ; Mohammadi, M. R ; Sharif University of Technology
2013
Abstract
Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were...
Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process
, Article Tissue Engineering and Regenerative Medicine ; Volume 9, Issue 6 , 2012 , Pages 295-303 ; 17382696 (ISSN) ; Mohammadi, M. R ; Sharif University of Technology
2012
Abstract
Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD),...