Loading...
Search for: separation
0.021 seconds
Total 682 records

    Separation of Boron Isotopes by Distillation of (CH3)2O-BF3 Complex

    , M.Sc. Thesis Sharif University of Technology abdollahi, Mojtaba (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor)
    Abstract
    Natural boron includes two stable isotopes 10B and 11B with 19.3 and 80.7 weight percent respectivley.10B isotope has a high thermal neutron absorption cross section. So isotope 10B material is suitable for making atomic reactor control rods. Other and even more important applications of 10B are in disclosing neutrons in order to measure neutron reactors fluxes and also are in nuclear physics laboratories and medical radiation. This isotope also is used in the pharmaceutical and the military industries. There are several methods for separating boron isotopes. Among the distillation methods, thermal diffusion of BF3, distillation of BF3, distillation of methyl borate, boric acid distillation... 

    Synthesis of Graphene Oxide and Graphene Oxide Membrane for Separation of Gas Mixtures

    , M.Sc. Thesis Sharif University of Technology Abbasi, Fateme (Author) ; Ghotbi, Sirus (Supervisor) ; Karimi Sabet, Javad (Supervisor) ; Mousavi, Abbas (Co-Advisor)
    Abstract
    Thin film graphene oxide(GO) membranes have been promising potential for gas purification due to thin lamellar microstructure, stable a few atom thick layers and very short intersheet distances. In this research, the nanoporous graphene oxide membranes have been prepared by vacuum and pressurized ultrafiltration on the modified polyacrylonitryle(mPAN) sublayer for helium separation from Nitrogen and carbon dioxide gas mixture. The separation performance of synthesized GO membrane was controlled by varying parameters such as concentration of stabilized aqueous GO solution, pores size range of support and its surface properties, centrifuge time, applied pressure after synthesis, humidity,... 

    Theoretical and Experimental Studies of Interaction of Laser Beam with Particulate Microflows

    , Ph.D. Dissertation Sharif University of Technology Zabetian Targhi, Mohammad (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed ($item.subfieldsMap.e) ; Shafii, Mohammad Behshad ($item.subfieldsMap.e)
    Abstract
    Contactless and nonintrusive methods in particulate manipulation have been considered by many investigations. Particularly the use of these methods in characterization of micro and nano flows is in the focus of interests. Laser usage in the particulate systems has been dramatically increased during the last two decades. Laser can be used either as an illustration or excitation source in these systems. So-called optical tweezers use the laser beam for particle manipulation and characterization based on the hydrodynamic interaction of the laser beam with particles. There are numerous works being conducted in the field of particulate manipulation and characterization using laser beam.Present... 

    Optimization of Enriching Cascades Using Genetic Algorithms

    , M.Sc. Thesis Sharif University of Technology Sayadi, Vahid (Author) ; Otukesh, Mohammad (Supervisor) ; Norouzi, Ali (Supervisor) ; Ayoubzadeh, Mohsen (Co-Advisor)
    Abstract
    One of the challenging issues in Iran's nuclear talks and Group 5+1 countries is the amount of Iran's enrichment capacity and the number of centrifuges needed to meet this demand. In this regard, Iran has recently announced that the basis for determining its enrichment capacity is the supply of fuel for the Bushehr power plant.Modeling and optimizing of gas centrifuge cascade is one of the most important problems in fuel cycle and isotope separation fields. To achieve this goal it is needed to comprehend of single centrifuge operation. Knowing the effectofsingle centrifuge parameters, it is easy to design a desired cascade. Minimizing the number of machines in the cascade is an anticipated... 

    Multimodal Blind Source Separation

    , Ph.D. Dissertation Sharif University of Technology Sedighin, Farnaz (Author) ; Babaie-Zadeh, Massoud (Supervisor)
    Abstract
    Blind Source Separation (BSS) is a challenging task in signal processing which aims to separate sources from their mixtures when no information is available about the sources or the mixing system. Different approaches have already been proposed for source separation.However, during the last decade, new approaches based on multimodal nature of phenomena have been proposed for source separation. Different aspects of a multimodal phenomenon can be measured by means of different instruments where each of the measured signals is called a modality of that phenomenon. Although the modalities are different signals with different features, due to the same physical origin, they usually have some... 

    Preparation and Surface Modification of PC Membranes for Gas Separation

    , M.Sc. Thesis Sharif University of Technology Sedghi, Saeed (Author) ; Soltanieh, Mohammad (Supervisor) ; Goodarznia, Iraj (Supervisor)
    Abstract
    The gas separation properties of polycarbonate (PC) membranes were investigated in this study. These membranes were prepared via dry and dry-wet phase inversion technique. Pure O2, N2, and CO2 gases were permeated through prepared membranes. The effects of membrane preparation conditions, including solvent type, non-solvent type, non-solvent/solvent volumetric ratio, polymer weight fraction, and drying temperature on the gas separation properties of dry PC membranes were investigated using Taguchi experimental design. Taguchi analysis show that polymer weight fraction offers the most important effect on the separation characteristics of the dry PC membranes. To get the highest... 

    Developing a Hybrid Continuum-Molecular Method to Analyze Binary Gas Mixing and Separation Processes

    , Ph.D. Dissertation Sharif University of Technology Sabouri, Moslem (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    The co-existance of rarefied and near-continuum flow regimes is widelyencountered in analyzing the multiscale flow problems, e.g., micro-and nanoflows. Previous investigations have revealed that the continuum-based simulation methods would suffer from the lack of accuracy to predict the rarefied flow regimes. On the other hand, the molecular simulation methods are not computationally efficient in simulating the near-continuum flow regimes. Therefore, the use of hybrid simulation methods has been recommended as a serious alternative to simulate the multiscale flow problems. These methods apply the molecular methods in solving the rarefied flow regions and the continuum methods in solving the... 

    Human Cells Separation Via Imprinted Polymer

    , M.Sc. Thesis Sharif University of Technology Sabaghi, Davood (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The goal of this research is to elucidate the mechanism of Cell recognition in molecularly imprinted polymers (MIPs) using already utilized techniques. Our approach employs a more flexible non-covalent imprinting method which starts from a readily available polymer and utilizes an aqueous environment for both MIP synthesis and testing. Cell MIPs against MG-63 cell were synthesized. The synthesis procedure was optimized to obtain better binding characteristics to the targeted cell. Adsorption of target cell onto imprinted Alginate Spheres was facilitated by these macromolecular fingerprints as revealed by various microscopical examinations The imprinted Spheres showed high selectivity toward... 

    WT-SOBI Method Towards Blind System Identification of Structures

    , M.Sc. Thesis Sharif University of Technology Saremi, Shervin (Author) ; Kazemi , Mohammad Taghi (Supervisor)
    Abstract
    Blind source separation methods such as independent component analysis (ICA) and second order blind identification (SOBI) have shown considerable potential in the area of ambient vibration system identification. The objective of these methods is to separate the modal responses, or sources, from the measured output responses, without the knowledge of excitation. Several frequency domain and time domain methods have been proposed and successfully implemented in the literature. Whereas frequency-domain methods pose several challenges typical of dealing with signals in the frequency-domain, popular time domain methods such as NExT/ERA and SSI pose limitations in dealing with noise, low sensor... 

    Separation of Oxygen from Gas Mixture of Carbon Dioxide and Oxygen with Cyclohexanol and Triethylene Glycol Liquid Membrane in the Presence of Metal Oxide Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Sadeghian, Parastoo (Author) ; Bastani, Daruoosh (Supervisor)
    Abstract
    In this research, the effect of feed flow concentration on the separation of gas mixture of carbon dioxide and oxygen was investigated by using supported liquid membrane in the presence of nano particles. In order to achieve this purpose, supported liquid membranes were prepared by impregnating a porous hydrophilic PVDF support with TEG, cyclohexanol, TEG/Fe3O4 nano particles and cyclohexanol/ Fe3O4 nano particles. Permeability and selectivity of mixed gases CO2 and O2 were examined at five different CO2 concentrations in feed flow, constant feed flow rate and constant total pressure difference.
    In all tests, the permeance of carbon dioxide through cyclohexanol and TEG membranes was... 

    Design and Fabrication of Polymeric Scaffold by 3D Bioprinter for Skull Bone Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Saberi, Fatemeh (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    Cranioplasty is a surgical procedure for repairing skull defects. This surgery will protect the brain tissue, reduce pain in the lesion site and reduce the psychological burden on the patient. Cranioplasty implants should have distinct characteristics, i.e., high strength for protecting the brain, full coverage of skull defects, resistance to infection, non-expansion with heat, and reasonable price. Titanium implants, bone allografts, hydroxyapatite, and methyl methacrylate are commonly used in this surgery. However, these materials have many disadvantages that limit their use. As a result, biodegradable material and 3D printing technology are the next steps for designing scaffolds according... 

    Surface Modification of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs)for Cell Separation

    , M.Sc. Thesis Sharif University of Technology Shirzadeh, Ghazale (Author) ; Maddah Hoseini, Hamid Reza (Supervisor)
    Abstract
    The aim of this project is the surface modification of super para magnetic iron oxide (SPIONs), leading to oriented covalent bonding of antibody(AB) to these nanoparticles (NPs) and improve the efficiency of cell separation at MACS columns. For this purpose, SPIONs synthesized by co-precipitation method, and the stability of colloidal NPs then was provided by coating with Dextran . We used TGA to measure weight percentage of dextran. Some properties like particle size, hydrodynamic diameter, presence of coating and superparamagnetic properties were characterized by XRD (16 nm), FTIR, DLS (73 nm), TEM (20nm) and VSM (≈76/78 emu/g) method, respectively. Then we tried to immobilize AB on NPs... 

    The Investigation of Vortex Generators Effects on the Efficiency of Axial Flow Fans

    , M.Sc. Thesis Sharif University of Technology Shekaridahaj, Morteza (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    The ever-increasing need for energy compels researchers to investigate different manners of energy saving. Aَs we know well, one of the effective ways to save energy is to improve the energy consumption of turbomachinery devices such as axial flow fans. Fans are the most applicable of turbomachinery which supply needed airflow, which can be used in ventilation systems, Cooling systems for cars and machines, smoke extraction, and supply required air for firing. Therefore, improving their efficiency can play a significant role in reducing energy consumption and enhancing energy storage. One of the most critical factors in reducing the efficiency of the fans is the stall phenomenon, which can... 

    Two-Dimensional Dictionary Learning and its Application in Image Denoising

    , M.Sc. Thesis Sharif University of Technology Shahriari Mehr, Firooz (Author) ; Babaiezadeh, Masoud (Supervisor)
    Abstract
    Sparse representation and consequently, dictionary learning have been two of the great importance topics in signal processing problems for the last two decades. In sparse representation, each signal has to be represented as a linear combination of some basic signals, which are called atoms, and their collection is called a dictionary. To put it in other words, if complete dictionaries such as Fourier or Wavelet dictionaries are used for the representation of signals, the representation will be unique, but not sparse. On the other hand, if overcomplete dictionaries are used, we will confront with too many representations, and the goal of sparse representation is to find the sparsest one. ... 

    Separation of Plasma from Blood Using a Dielectrophoresis-Assisted Microfluidic Device

    , M.Sc. Thesis Sharif University of Technology Shams, Mehran (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    % of human blood makes up of plasma, that this plasma is a rich source of proteins that can be used as biomarkers for a variety of clinical diseases and laboratory research, therefore, it is necessary that the plasma be separate by a high purity percentage. Using a centrifuge It is a common method used to separate plasma from blood, but because it requires large equipment and a large volume of blood, as well as stress caused by centrifugal force, increases the probability of damage to the biomarkers, so it has been tried today that Use methods that are easy to transport and require a small amount of blood. The idea of using the microfluidic device has been put forward for the purpose of... 

    Convective-Reactive Transport and Unstable Density-Driven Flow in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Shafabakhsh, Paiman (Author) ; Ataie-Ashtiani, Behzad (Supervisor)
    Abstract
    The goal of this study is to explore the density-driven flow and study the effect of fracture as well as chemical processes and reactions on convective transport. Convective flow is used in connection with the density-driven flow where the flow is driven by density differences in the fluid, which can be affected by the ambient rocks. Several studies of density-driven flow in porous media have focused on the effect of heterogeneity on the mixing convection; however, they neglect the key processes of geochemical reactions in fractured porous media. This study aims to address this gap by investigating the combined effect of heterogeneity (as fractures) and the existing geochemical reactions on... 

    Impact of Oxygen-enriched Air Combustion by Membrane System on Performance of Diesel Engine and Air Pollutants Emission

    , M.Sc. Thesis Sharif University of Technology Shoaee Maddah, AmirHossein (Author) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. In the present work after an introduction to membrane seperation and membrane seperators for oxygen-nitrogen from air, a simulation of combustion chamber by GT-Power and membrane COMSOL Multiphysics was used to study the impact of oxygen enrichment on combustion, pollution and performance parameters with 23, 25 and 27% levels of enrichment. Increasing the oxygen engine content with the air leads to faster burn rates and the ability to burn more fuel at the same stoichiometry. These effects have the potential to decrease specific fuel consumption and... 

    Electrolysis Separation of Hydrogen Isotopes Using Metallic Electrodes Coated with Graphene Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Separdar, Mahnaz (Author) ; Otukesh, Mohammad (Supervisor) ; Sadjjadi, Sudeh (Supervisor)
    Abstract
    The most abundant source of deuterium, of course, is natural water. Other potential natural sources are natural gas and petroleum. Of these, natural water is by far the most significant. Until 1943, all the heavy water produced commercially was made by electrolysis. The largest single producer of heavy water was the Norsk Hydro Company, which operated the world's largest electrolytic hydrogen plant at Rjukan, Norway. In a detailed laboratory investigation of the effect of cell variables on the deuterium separation factor in electrolysis of water, Brun and co-workers [B13] have found that a: depends on the cathode material, electrolyte composition, and cell temperature, generally as... 

    Recovery of Uranium(VI) from UCF Waste by Selective Transportacross Aliquid Membrane

    , M.Sc. Thesis Sharif University of Technology Soltani Behrouz, Masoud (Author) ; Samadfam, Mohammad (Supervisor) ; Fasihi, Javad (Supervisor)
    Abstract
    Due to environmental and economical impacts, recovery of the uranium from nuclear wastes is of continuing interest.This work reports the separation of uranyl ionusing transport technique through chloroform liquid membrane containing a mixture of DBDA15C4 and oleic acidas cooperative carrier.The pH of the feed phase (10-4 M of UO22+) was adjusted with nitric acid and acetic acid/NaOH for pHrange of 2-6.The receiving phase was hydrochloric acid 1M.The organic phase was chloroform which includesthe carrier DBDA15C4 (0.0001 M) and also the oleic acid (0.015M).The results showed that the transport increased with increasing pH and reached to maximumat pH of 5.Maximum cooperative effect of oleic... 

    Designing, Computational Modeling and Fabrication of a Magnetic Centrifugal Microfluidic to Separate Circulating Tumor Cells from Blood Sample

    , M.Sc. Thesis Sharif University of Technology Selahi, Amirali (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Separating cells from a mixed sample is a required task in biotechnology and modern medicine, for example to isolate CTC’s that are of interest for doing therapy and diagnosing or doing research. A minute percentage of target cells must be separated from a large amount of unwanted cells. These target cells like CTC’s could be as rare as 1 target cell per millions of unwanted background cells. Hence Microfluidic cell sorting schemes based upon fluorescent labelling, electrophoresis, dielectrophoresis and magnetophoresis have been devised. Microfluidic magnetically-activated cell sorting (MACS) does not need any optical instrument or current source and electrode. By using an electromagnet or...