Loading...
Search for: shake-table-tests
0.004 seconds
Total 30 records

    Design and Construction of Large-scale Laminar Shear Box for Study of the Behavior of Deep Foundations Subjected to Lateral Loads due to Lateral Spreading using 1-g Shake Table Tests

    , M.Sc. Thesis Sharif University of Technology Kamali Zarch, Mohsen (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Using appropriate box as an artificial boundary condition is one of the critical tasks in geotechnical physical modeling of the soil mass especially under cyclic loading such as earthquakes. In general there are two types of boxes which can simulate boundary conditions of scaled models as rigid or flexible conditions. Main purpose of this study is design and construction of a flexible box in a way that effects of boundary condition have been minimized during tests. Construction of this box is the first step of an investigation project which concern to evaluate the effect of lateral spreading as a result of liquefaction on deep foundations of bridges, piers, harbors by using shake table test... 

    Investigation of the Effects of Successive Liquefaction Occurrence on Piles Located in Level Ground with an Inclined Base Layer-A Physical 1g Shake Table and Laminar Shear Box Model

    , M.Sc. Thesis Sharif University of Technology Moradi, Mohammad (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    The phenomenon of soil liquefaction has caused significant damage to deep foundations of engineering structures such as bridges and buildings in past earthquakes. In recent years, many researchers have studied the effects of soil liquefaction on the pile response, but there are still many unknowns that require further research and study. The present study is part of a comprehensive research that involves several Ph.D. and master students at Sharif University of Technology (SUT). In this study, the effects of soil liquefaction on two pile 2×2 groups (one with a lumped mass and another without) in a level ground with a sloping bed were investigated. A surface non-liquefied layer was also... 

    Investigation of Effects of Successive Liquefaction Occurrence on Piles Located in Level Ground With an Inclined Base Layer with Using Stone Cloumns – a Physical 1g Shake Table and Laminar Shear Box Model

    , M.Sc. Thesis Sharif University of Technology Dehghanpour Farashah, Ali (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Lateral spreading is defined as finite lateral displacement of mildly sloping grounds or those ending in free faces induced by liquefaction. The phenomenon of lateral spreading caused by liquefaction in coastal areas and mildly sloping grounds has caused significant damage to deep foundations of engineering structures such as bridge and buildings in severe earthquakes. Since earthquake is unavoidable, therefore, it is necessary to provide appropriate solution to reduce the effects of liquefaction induced lateral spreading. Despite conducting various laboratory and field studies by previous researchers, there is still no comprehensive approach to evaluate the effects of lateral spreading on... 

    Studying the Effects of Liquefaction Induced Lateral Spreading on Piles and Evaluation of a Remedial Measure Against Pile Damaging Due to These Effects with Shake Table Tests Using Laminar Shear Box

    , Ph.D. Dissertation Sharif University of Technology Rajabigol, Morteza (Author) ; Haeri, Mohsen (Supervisor) ; Kavand, Ali (Co-Supervisor)
    Abstract
    Liquefaction-induced lateral spreading is one of the most challenging problems in geotechnical earthquake engineering. This phenomenon may impose severe damages on deep foundations in large earthquakes. In this study, six physical modeling are designed, built and tested to investigate the effects of lateral spreading on deep foundations and also assess one mitigation method. The experiments were conducted using 1g shake table of Sharif university of technology. In this respect, a large laminar shear box with outer dimensions of 420, 240 and 180 cm was designed and constructed. The laminar shear box consisted of 23 steel laminates with inner dimensions of 306×172 cm. Four experiments were... 

    Applicability of rigid block based approaches in predicting sandy slope displacements by 1g shaking table tests

    , Article Soil Dynamics and Earthquake Engineering ; Volume 126 , 2019 ; 02677261 (ISSN) Jafarzadeh, F ; Farahi Jahromi, H ; Rajabigol, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Various approaches have been developed by researchers to predict earthquake induced landslide displacements. This study evaluates the applicability of these approaches on sandy slopes. For this purpose, nine physical models are constructed inside a rigid box and thirty-six shaking table tests are conducted. Dynamic responses are then converted to the full scale model by applying similitude laws. Five statistical criteria are applied to compare the measured and predicted displacements and evaluate the precision of the approaches. By combining the outcomes and using a scoring procedure, the approaches are scored. Consequently, the approaches of Fotopoulou and Pitilakis [23] and Hsieh and Lee... 

    Experimental seismic investigation of Sefid-rud concrete buttress dam model on shaking table

    , Article Earthquake Engineering and Structural Dynamics ; Volume 37, Issue 5 , 2008 , Pages 809-823 ; 00988847 (ISSN) Ghaemmaghami, A. R ; Ghaemian, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2008
    Abstract
    Owing to the devastating M7.6 earthquake of 20 June 1990 that occurred in the northern province of Iran, Sefid-rud concrete buttress dam located near the epicenter was severely shaken. The crack penetrated throughout the dam thickness near slope discontinuity, causing severe leakage, but with no general failure. In this study, nonlinear seismic response of the highest monolith with empty reservoir is investigated experimentally through model testing. A geometric-scaled model of 1:30 was tested on a shaking table with high-frequency capability to study dynamic cracking of the model and serve as data for nonlinear computer model calibration. Three construction joints are set up in the model to... 

    Shaking table test on small-scale retrofitted model of Sefid-rud concrete buttress dam

    , Article Earthquake Engineering and Structural Dynamics ; Volume 39, Issue 1 , 2010 , Pages 109-118 ; 00988847 (ISSN) Ghaemmaghami, A. R ; Ghaemian, M ; Sharif University of Technology
    Abstract
    Sefid-rud concrete buttress dam with a height of 106m was damaged during the devastating 1990 Manjil earthquake. The dam was repaired and strengthened using epoxy grouting of cracks and the installation of post-tensioned anchors. In a previous study, nonlinear seismic response of the highest monolith with empty reservoir was investigated experimentally through model testing. A geometric-scaled model of 1:30 was tested on a shaking table to study dynamic cracking of the model. As a result of the similarity between model and prototype cracking pattern, the model was retrofitted according to prototype retrofitting plan after the Manjil earthquake and re-tested on shaking table to estimate the... 

    Experimental and Numerical Evaluation of Cold-Formed Steel Shear Panel with Suitable Sheathing Under Seismic Loading

    , Ph.D. Dissertation Sharif University of Technology Rahimi Bala, Mohammad (Author) ; Rahimzadeh Rofooei, Fayaz (Supervisor)
    Abstract
    In this thesis, the behavior of cold-form steel (CFS) frames equipped with various configurations of steel sheathing and K-shaped braces is experimentally investigated. Low lateral resistance is the main deficiency of the CFS shear walls. Despite their advantages, such as being lightweight, ease of fabrication, and an environmentally friendly system, their lack of adequate lateral strength prevents engineers from widely using them, especially in areas with medium to high seismicity or in mid-rise buildings. In this regard, a total of seven full-scale specimens with different configurations of steel sheathing and k-braced, with and without cladding, were tested to investigate their seismic... 

    Shaking table test of a 1: 2.35 scale 4-story building constructed with a 3D panel system

    , Article Scientia Iranica ; Volume 16, Issue 3 , 2009 , Pages 199-215 ; 10263098 (ISSN) Rezaifar, O ; Zaman Kabir, M ; Bakhshi, A ; Sharif University of Technology
    2009
    Abstract
    The seismic behaviour of a 4-story building is investigated under horizontal excitation of simulated earthquakes. The model has been constructed with a 3D sandwich panel system without any conventional frame system in four storeys on a shaking table. The building has been modelled before construction. Due to the table limit, the scale factor of the model is chosen as 1: 2.35 of a prototype. The shaking table test of the scaled model of the building is carried out under several ground motions to verify the safety of the system. The simulated motions were applied to the model in two-perpendicular directions, simultaneously. The failure mechanism and dynamic behaviour of the model, as a... 

    Blind identification of soil-structure systems

    , Article Soil Dynamics and Earthquake Engineering ; Volume 45 , February , 2013 , Pages 56-69 ; 02677261 (ISSN) Ghahari, S. F ; Ghannad, M. A ; Taciroglu, E ; Sharif University of Technology
    2013
    Abstract
    Surrounding soil can drastically influence the dynamic response of buildings during strong ground shaking. Soil's flexibility decreases the natural frequencies of the system; and in most cases, soil provides additional damping due to material hysteresis and radiation. The additional damping forces, which are in non-classical form, render the mode shapes of the soil-structure system complex-valued. The response of a soil-foundation system can be compactly represented through impedance functions that have real and imaginary parts representing the stiffness and damping of the system, respectively. These impedance functions are frequency-dependent, and their determination for different...