Loading...
Search for: shape-memory-effect
0.011 seconds

    A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys

    , Article International Journal of Plasticity ; Volume 27, Issue 6 , June , 2011 , Pages 940-961 ; 07496419 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Sharif University of Technology
    2011
    Abstract
    The logarithmic or Hencky strain measure is a favored measure of strain due to its remarkable properties in large deformation problems. Compared with other strain measures, e.g.; the commonly used Green-Lagrange measure, logarithmic strain is a more physical measure of strain. In this paper, we present a Hencky-based phenomenological finite strain kinematic hardening, non-associated constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The derivation is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, and on the use of the isotropic property of the Helmholtz strain energy function. We... 

    Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter

    , Article IEEE Transactions on Power Electronics ; Volume 26, Issue 2 , August , 2011 , Pages 462-472 ; 08858993 (ISSN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, S. M. H ; Sharif University of Technology
    2011
    Abstract
    LLC resonant converter has been widely used in dcdc converters. In this paper, optimum dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter are investigated for realizing the zero voltage switching (ZVS) operation even under the worst-case conditions. Analyses demonstrate that these parameters depend on the converter inductance ratio and ratio of the converter resonant capacitor and the effective capacitance appeared in parallel with the drainsources of the power MOSFETs. The necessary dead time for realizing the ZVS operation can be minimized by choosing the normalized maximum switching frequency, properly. Using the dead-time optimum value, soft... 

    An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys

    , Article Finite Elements in Analysis and Design ; Volume 47, Issue 2 , 2011 , Pages 166-174 ; 0168874X (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sharif University of Technology
    2011
    Abstract
    The ever increasing number of shape memory alloy applications has motivated the development of appropriate constitutive models taking into account large rotations and moderate or finite strains. Up to now proposed finite-strain constitutive models usually contain an asymmetric tensor in the definition of the limit (yield) function. To this end, in the present work, we propose an improved alternative constitutive model in which all quantities are symmetric. To conserve the volume during inelastic deformation, an exponential mapping is used to arrive at the time-discrete form of the evolution equation. Such a symmetric model simplifies the constitutive relations and as a result of less... 

    On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model

    , Article International Journal for Numerical Methods in Engineering ; Volume 85, Issue 1 , July , 2011 , Pages 107-134 ; 00295981 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sharif University of Technology
    2011
    Abstract
    Most devices based on shape memory alloys experience large rotations and moderate or finite strains. This motivates the development of finite-strain constitutive models together with the appropriate computational counterparts. To this end, in the present paper a three-dimensional finite-strain phenomenological constitutive model is investigated and a robust and efficient integration algorithm is proposed. Properly defining the variables, extensively used regularization schemes are avoided and a nucleation-completion criterion is defined. Moreover, introducing a logarithmic mapping, a new form of time-discrete equations is proposed. The solution algorithm as well as a suitable initial guess... 

    Implementation of microplane model into three-dimensional beam element for shape memory alloys

    , Article International Journal of Applied Mechanics ; Volume 7, Issue 6 , December , 2015 ; 17588251 (ISSN) Poorasadion, S ; Arghavani, J ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    In this study, a three-dimensional (3D) beam element based on Timoshenko beam theory is introduced for shape memory alloys (SMAs). Employing the microplane approach, we use a 3D SMA constitutive model extended from a 1D model proposed by Brinson. The SMA model is implemented into a user-defined subroutine (UMAT) in the nonlinear finite element software ABAQUS/Standard. Results of numerical examples show reasonable agreement with experimental data in proportional and non-proportional loadings. Furthermore, several applications (staple, spring, structure) are simulated and the results are compared with those of continuum elements. According to the results, the 3D SMA beam element can be used... 

    A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings

    , Article International Journal of Plasticity ; Volume 26, Issue 7 , July , 2010 , Pages 976-991 ; 07496419 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    This paper presents a new phenomenological constitutive model for shape memory alloys, developed within the framework of irreversible thermodynamics and based on a scalar and a tensorial internal variable. In particular, the model uses a measure of the amount of stress-induced martensite as scalar internal variable and the preferred direction of variants as independent tensorial internal variable. Using this approach, it is possible to account for variant reorientation and for the effects of multiaxial non-proportional loadings in a more accurate form than previously done. In particular, we propose a model that has the property of completely decoupling the pure reorientation mechanism from... 

    A survey of medical image registration on multicore and the GPU

    , Article IEEE Signal Processing Magazine ; Volume 27, Issue 2 , 2010 , Pages 50-60 ; 10535888 (ISSN) Shams, R ; Sadeghi, P ; Kennedy, R ; Hartley, R ; Sharif University of Technology
    2010
    Abstract
    In this article, we look at early, recent, and state-of-the-art methods for registration of medical images using a range of high-performance computing (HPC) architectures including symmetric multiprocessing (SMP), massively multiprocessing (MMP), and architectures with distributed memory (DM), and nonuniform memory access (NUMA). The article is designed to be self-sufficient. We will take the time to define and describe concepts of interest, albeit briefly, in the context of image registration and HPC. We provide an overview of the registration problem and its main components in the section "Registration." Our main focus will be HPC-related aspects, and we will highlight relevant issues as... 

    The combination of KMnO4 oxidation and polymeric flocculation for the mitigation of membrane fouling in a membrane bioreactor

    , Article Separation and Purification Technology ; Volume 159 , 2016 , Pages 124-134 ; 13835866 (ISSN) Zarei baygi, A ; Moslemi, M ; Mirzaei, S. H ; Sharif University of Technology
    Elsevier 
    Abstract
    KMnO4 oxidation combined with polyelectrolyte (K530CF) flocculation was investigated to mitigate membrane fouling in a membrane bioreactor. The optimum dosages of chemical additives in order to enhance the removal of soluble microbial products (SMPs) were determined. This method was able to reduce the concentration of COD in the effluent to 57.1% and 51.1% lower than those in the experiments in the absence of chemical flocculants and in the presence of polyelectrolyte, respectively. NH3-N removal was improved by combining KMnO4 and K530CF. When KMnO4 was used along with polyelectrolyte, the zeta potential was neutralized to a greater extent which resulted in an improvement in the... 

    An investigation on thermomechanical flexural response of shape-memory-polymer beams

    , Article International Journal of Applied Mechanics ; Volume 8, Issue 5 , 2016 ; 17588251 (ISSN) Molaaghaie Roozbahani, M ; Heydarzadeh, N ; Baghani, M ; Eskandari, A. H ; Baniassadi, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2016
    Abstract
    In this paper, the predictions of different beam theories for the behavior of a shape memory polymer (SMP) beam in different steps of a thermomechanical cycle are compared. Employing the equilibrium equations, the governing equations of the deflection of a SMP beam in the different steps of a thermomechanical cycle, for higher order beam theories (Timoshenko Beam Theory and von-Kármán Beam Theory), are developed. For the Timoshenko Beam Theory, a closed form analytical solution for various steps of the thermomechanical cycle is presented. The nonlinear governing equations in von-Kármán Beam theory are numerically solved. Results reveal that in the various beam length to beam thickness... 

    Nonlinear parameters of shape memory alloys via strain rate

    , Article Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2009, SMASIS2009; 21 September 2009 through 23 September 2009 ; Volume 1 , 2009 , Pages 663-671 ; 9780791848968 (ISBN) Amini, A ; Mehdigholi, H ; Elahinia, M ; Sharif University of Technology
    Abstract
    This paper theoretically finds the different parameters of shape memory alloys via strain rate. Finite element formulation for temperature rate, and produced latent heat due to phase transition have been derived. Moreover, the equivalent viscous damp coefficient is provided. In addition, the Devonshire coefficient has been theoretically found by simplifications. This method helps to predict the heat and temperature change in quasi-static and dynamic studies in NiTi. Furthermore, they could be used in high nonlinear and low elastic deflection of NiTi. Then, the nonlinear vibration of smart composite involved with NiTi from any kind and percent of Ni and Ti could be handled by results.... 

    Energy harvesting from structural vibrations of magnetic shape memory alloys

    , Article Applied Physics Letters ; Volume 110, Issue 10 , 2017 ; 00036951 (ISSN) Askari Farsangi, M. A ; Cottone, F ; Sayyaadi, H ; Zakerzadeh, M. R ; Orfei, F ; Gammaitoni, L ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating... 

    The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys

    , Article Journal of Alloys and Compounds ; Volume 487, Issue 1-2 , 2009 , Pages 363-366 ; 09258388 (ISSN) Khalil Allafi, J ; Amin Ahmadi, B ; Sharif University of Technology
    2009
    Abstract
    In the present research work the binary NiTi alloys with various compositions in the range of 50.3-51 at.% Ni were used. Samples have been annealed at 850 °C for 15 min and then quenched in water. In order to characterize transformation temperatures and enthalpy changes of the forward and the reverse martensitic transformation, Differential Scanning Calorimetric (DSC) experiments were performed. The enthalpy and entropy changes as a function of Ni atomic content have been thermodynamically investigated. Results show that enthalpy and entropy changes of martensitic transformation decrease when Ni atomic content increases. The variation of enthalpy and entropy of martensitic transformation... 

    Phase transformation behavior of porous NiTi alloy fabricated by powder metallurgical method

    , Article Materials Science and Engineering C ; Volume 29, Issue 7 , 2009 , Pages 2203-2207 ; 09284931 (ISSN) Hosseini, S. A ; Sadrnezhaad, S. K ; Ekrami, A ; Sharif University of Technology
    2009
    Abstract
    Nickel titanium shape memory alloys (NiTi-SMAs) were successfully produced from elemental Ni/Ti powders by powder metallurgical method and then subjected to age treatment. Microstructure was examined by SEM and XRD and phase transformation temperatures were measured by dilatometric method. The phase transformation temperatures increased with both duration and temperature of the age treatment. The porous product exhibited desirable shape memory effect. © 2009 Elsevier B.V. All rights reserved  

    Mechanism of reaction of molten NiTi with EBM graphite crucible

    , Article Materials Science and Technology ; Volume 25, Issue 6 , 2009 , Pages 699-706 ; 02670836 (ISSN) Sadrnezhaad, Kh ; Ahmadi, E ; Malekzadeh, M ; Sharif University of Technology
    2009
    Abstract
    Ultra clean NiTi shape memory alloy was produced by electron beam melting of Ni rich vacuum inductionally melted butts together with pure Ti chunks in both condensed and electrographite crucibles. A hollow cathode discharge gun was used for heating up to 1623, 1653 and 1693 K and holding the charge materials under vacuum for 300, 600, 900 and 1200 s. Effects of temperature, time and compactness of the crucible on formation/disappearance of the hard compounds like Ni3Ti, Ti4Ni2O, Ti4Ni 2C, Ti3Ni2OC and TiC were determined by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. A combination of the experimental results with the kinetic rate equations indicated... 

    Interaction between refractory crucible materials and the melted NiTi shape-memory alloy

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Volume 36, Issue 3 , 2005 , Pages 395-403 ; 10735615 (ISSN) Sadrnezhad, S. K ; Badakhshan Raz, S ; Sharif University of Technology
    Minerals, Metals and Materials Society  2005
    Abstract
    Attempts have been made to quantify the amount of contaminants absorbed by liquid metal from commercial ZrO2-, Al2O3-, and SiC-base crucibles used for vacuum melting of Ni-45 wt pet Ti alloy. The molten alloy was held under vacuum for 90 minutes at 1450°C to become homogenized. Reactions between the liquid metal and the crucible were investigated by visual observation, chemical analysis, scanning electron microscopy (SEM) image processing, and X-ray mapping. The relative degree of contamination declined in the following sequence: commercially pure SiC > SiC-5 wt pct Al2O3-5 wt pet SiO2] > slurry cast alumina > recrystallized alumina > zircon type A > oxygen deficient high-purity zirconia.... 

    Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets

    , Article Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; Volume 23, Issue 5 , 2005 , Pages 1425-1429 ; 07342101 (ISSN) Sanjabi, S ; Cao, Y. Z ; Sadrnezhaad, S. K ; Barber, Z. H ; Sharif University of Technology
    2005
    Abstract
    The most challenging requirement for depositing NiTi-based shape memory thin films is the control of film composition because a small deviation can strongly shift the transformation temperatures. This article presents a technique to control film composition via adjustment of the power supplied to the targets during simultaneous sputter deposition from separate Ni, Ti, and X (e.g., Hf) targets. After optimization of sputter parameters such as working gas pressure, target-substrate distance, and target power ratio, binary Ni100-x Tix thin films were fabricated and characterized by energy dispersive x-ray spectroscopy in a scanning electron microscope (to measure the film composition and... 

    Ingredient losses during melting binary Ni-Ti shape memory alloys

    , Article Journal of Materials Science and Technology ; Volume 21, Issue 4 , 2005 , Pages 484-488 ; 10050302 (ISSN) Sadrnezhaad, S. K ; Badakhshan Raz, S ; Sharif University of Technology
    2005
    Abstract
    Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100°C above the melting point inside the crucible. Chemical... 

    Multi-target sputter deposition of Ni50Ti 50 - XHfx shape memory thin films for high temperature microactuator application

    , Article Sensors and Actuators, A: Physical ; Volume 121, Issue 2 , 2005 , Pages 543-548 ; 09244247 (ISSN) Sanjabi, S ; Cao, Y. Z ; Barber, Z. H ; Sharif University of Technology
    2005
    Abstract
    High temperature shape memory NiTiHf thin films with varying hafnium contents up to 28.7 at.% were fabricated by DC magnetron sputtering using simultaneous sputter deposition from separate elemental targets. The required film composition was achieved by adjusting the power ratio to the targets. The as-deposited films were amorphous; a post deposition annealing was performed at 550 °C to crystallize the films. Two-micron thick films were characterized by energy dispersive spectroscopy in a scanning electron microscope, temperature controlled X-ray diffraction, differential scanning calorimetry, and atomic force microscopy. The results showed that above 10 at.% Hf additions the transformation... 

    Accumulative roll bonding and post-deformation annealing of Cu-Al-Mn shape memory alloy

    , Article Journal of Materials Engineering and Performance ; Vol. 23, issue. 12 , 2014 , pp. 4429-4435 ; ISSN: 1544-1024 Moghaddam, A. O ; Ketabchi, M ; Afrasiabi, Y ; Sharif University of Technology
    Abstract
    Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens... 

    A finite deformation constitutive model for shape memory polymers based on Hencky strain

    , Article Mechanics of Materials ; Vol. 73 , 2014 , pp. 1-10 ; ISSN: 01676636 Baghani, M ; Arghavani, J ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    In many engineering applications, shape memory polymers (SMPs) usually undergo arbitrary thermomechanical loadings at finite deformation. Thus, development of 3D constitutive models for SMPs within the finite deformation regime has attracted a great deal of interest. In this paper, based on the classical framework of thermodynamics of irreversible processes, employing the logarithmic (or Hencky) strain as a more physical measure of strain, a 3D large-strain macromechanical model is presented. In the constitutive model development, we adopt a multiplicative decomposition of the deformation gradient into elastic and stored parts. In addition, employing the averaging scheme, the logarithmic...