Loading...
Search for: shape-memory-effect
0.011 seconds
Total 90 records

    A study on the hot workability of wrought NiTi shape memory alloy

    , Article Materials Science and Engineering A ; Volume 528, Issue 18 , July , 2011 , Pages 5656-5663 ; 09215093 (ISSN) Morakabati, M ; Kheirandish, S ; Aboutalebi, M ; Taheri, A. K ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    The hot workability of a wrought 49.8 Ni-50.2 Ti (at pct) alloy was assessed using the hot compression tests in temperature range of 700-1000°C, strain rate of 0.001-1s-1, and the total strain of 0.7. The constitutive equations of Arrhenius-type hyperbolic-sine function was used to describe the flow stress as a function of strain rate and temperature. The preferable regions for hot workability of the alloy were achieved at Z (Zener-Holloman parameter) values of about 109-1013 corresponding to the peak efficiency of 20-30% in the processing map. However, a narrow area in the processing map including the deformation temperature of 1000°C and strain rate of 1s-1 is inconsistent with the related... 

    Study of shape memory effect in NiMnGa Magnetic Shape Memory Alloy single crystals by incremental modeling

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 441-446 ; 9780791849156 (ISBN) Khajehsaeid, H ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    Magnetic Shape Memory Alloys (MSMAs) are a category of active materials which can be excited by magnetic field. These alloys have been used in sensor and actuator applications recently. MSMAs possess special properties such as large magnetic field-induced strains (up to %10) and high actuation frequency (about 1kHz), while ordinary shape memory alloys can't act in frequencies above 5Hz due to the time involved with heat transformation. In this paper, MSMAs are modeled by an incremental modeling approach which utilizes different secant moduli for different parts of stress-strain curve. Furthermore, stress-strain curve of MSMAs is approximated using an analytical expression. The incremental... 

    Hysteresis identification of shape memory alloy actuators using a novel artificial neural network based Presiach model

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 1 , 2010 , Pages 653-660 ; 9780791844151 (ISBN) Zakerzadeh, M. R ; Firouzi, M ; Sayyaadi, H ; Bagheri Shouraki, S ; Sharif University of Technology
    Abstract
    In systems with hysteresis behavior like Shape Memory Alloy (SMA) actuators and Piezo actuators, an accurate modeling of hysteresis behavior either for performance evaluation and identification or controller design is essentially needed. One of the most interesting hysteresis none-linearity identification methods is Preisach model which the hysteresis is modeled by linear combination of hysteresis operators. In spite of good ability of the Preisach model to extract the main features of system with hysteresis behavior, due to its numerical nature, it is not convenient to use in real time control applications. In this paper a novel artificial neural network (ANN) approach based on the Preisach... 

    The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys

    , Article Journal of Alloys and Compounds ; Volume 499, Issue 1 , June , 2010 , Pages 57-62 ; 09258388 (ISSN) Morakabati, M ; Kheirandish, Sh ; Aboutalebi, M ; Karimi Taheri, A ; Abbasi, S. M ; Sharif University of Technology
    2010
    Abstract
    The influence of Cu addition on the hot deformation behavior of NiTi shape memory alloys was investigated using hot compression test. A series of alloys with different Cu contents of Ti50.4Ni49.6-xCux (x = 0, 3, 5, 7 at.%) were deformed under compression to a true strain of 0.7 at the temperature range of 700-1000 °C with 100 °C intervals and constant strain rate of 0.1 s-1. The stress-strain curves showed that the addition of Cu to NiTi alloy made the flow curves shift upward. This was confirmed by the calculated critical stress, σc, obtained from inflections in θ-σ plots, which is attributed to the formation of high strength Cu containing precipitates and solid solution hardening caused by... 

    The effects of homogenization time and cooling environment on microstructure and transformation temperatures of Ni-42.5wt%Ti-7.5wt%Cu alloy

    , Article Defect and Diffusion Forum ; Volume 297-301 , 2010 , Pages 344-350 ; 10120386 (ISSN); 3908451809 (ISBN); 9783908451808 (ISBN) Omrani, E ; Shokuhfar, A ; Etaati, A ; Dorri M., A ; Saatian, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2010
    Abstract
    The present paper deals with different effects of homogenization time and cooling environment on Ni-42.5wt%Ti-7.5wt%Cu alloy. The alloy was prepared by vacuum arc melting. Afterwards, three homogenization times (half, one and two hour) and three cooling environments (water, air and furnace) at 1373 K were selected. Optical and Scanning Electron Microscopic methods, EDX, DSC and hardness tests have been used to evaluate the microstructure, transformation temperatures and hardness. Results indicate that specimens that were cooled in air are super-saturated. Also, the microstructure from furnace cooling has many disparities with the other cooling environments' microstructure and two types of... 

    Nanostructural study of NiTi–TiO2–C core–shell nanoparticles generated by spark discharge method

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 9 , 2018 ; 09478396 (ISSN) Arzi, M ; Sabzehparvar, M ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Abstract: Nickel–titanium (NiTi) nanoparticles are ultrafine smart materials manifesting shape memory effect at very small scales. We have produced NiTi nanoparticles surrounded by an amorphous carbon shell using an innovative spark discharge system. The resulting nanoparticles were studied using various characterization methods to systematically study their size, morphology, size distribution, composition, structure, and thermal behavior. Field-emission scanning electron microscopy and dynamic light-scattering results indicated that the average size of the produced nanoparticles was about 13 nm. High-resolution transmission electron microscopy, energy-dispersive spectroscopy (EDS), and... 

    Stability control of a novel frame integrated with an SMA-MRF control system for marine structural applications based on the frequency analysis

    , Article Applied Ocean Research ; Volume 97 , 2020 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Structural integrity and ensuring the stability of steel frame structures, including marine and coastal structures, are the main challenges for designers in civil infrastructures, particularly in oil platforms, subjected to tough periodic and non-periodic environmental loading conditions. Variable loadings with different amplitudes and frequencies may lead to the stability of steel structures loss. In order to keep the stability of the steel structures and prevent possible damages, reliable yet efficient structural control systems are in demand. Conventional structural control systems need significant activation energy and/or in-depth users knowledge to be effective. Most recently, smart... 

    Optimizing the LLC-LC resonant converter topology for wide-output-voltage and wide-output-load applications

    , Article IEEE Transactions on Power Electronics ; Volume 26, Issue 11 , 2011 , Pages 3192-3204 ; 08858993 (ISSN) Beiranvand, R ; Zolghadri, M. R ; Rashidian, B ; Alavi, S. M. H ; Sharif University of Technology
    2011
    Abstract
    LLC-LC resonant converter is a suitable circuit topology to design switched-mode power supplies for wide-output-voltage and wide-output-load applications. In this paper, a design procedure is introduced to optimize this converter. Unlike soft switching techniques for pulse width modulated converters, which usually apply an active auxiliary circuit to reduce switching losses and EMI, in the proposed converter, not only such circuits are not used, but also all of the parasitic elements are merged to the converters main components. Zero-voltage switching (ZVS) operation is realized for all power devices under all operating conditions. Thus, this converter is a suitable choice for... 

    Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators

    , Article Journal of Intelligent Material Systems and Structures ; Volume 22, Issue 11 , 2011 , Pages 1249-1268 ; 1045389X (ISSN) Zakerzadeh, M. R ; Salehi, H ; Sayyaadi, H ; Sharif University of Technology
    2011
    Abstract
    There are two different ways of using shape memory alloy (SMA) wire as an actuator for shape control of flexible structures: it can be either embedded within the composite laminate or externally attached to the structure. As the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerabnle shape changes with the same magnitude of actuation force compared with the embedded type. Such a configuration also provides faster heat transfer rate owing to convection, which is very important in shape control applications that require a highfrequency response of SMA actuators. Although combination and physics-based... 

    Effect of shape memory alloy-magnetorheological fluid-based structural control system on the marine structure using nonlinear time-history analysis

    , Article Applied Ocean Research ; Volume 91 , 2019 ; 01411187 (ISSN) Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Marine structures, as key elements in the global energy network, constantly are subjected to harsh environmental loading conditions. Therefore, reliable yet efficient structural control mechanisms are required to ensure their safe functionality and structural stability. In the present work, a novel hybrid structural control element for marine structures has been designed in which the superelasticity effect of shape memory alloy (SMA) and damping controllability of magnetorheological fluid (MRF), as smart materials, have been combined. The novel system does not require huge external energy for activation and in addition, the system has the ability to be tuned for variable loading conditions....