Loading...
Search for: shear
0.009 seconds

    Seismic behavior comparison of RC shear walls strengthened using FRP composites and steel elements

    , Article Scientia Iranica ; Volume 28, Issue 3 A , 2021 , Pages 1-27 ; 10263098 (ISSN) Habibi, O ; Khaloo, A ; Abdoos, H ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    This paper aims at investigating the seismic behavior of strengthened reinforced concrete (RC) shear walls using a 3D finite element analysis. A series of four different configurations of carbon fiber reinforced polymer (CFRP) composites and four different schemes of steel elements are utilized to compare the two methods of retrofitting RC shear walls with similar dimensions and reinforcement ratios. Nonlinear simulations of the RC shear walls are conducted under the action of lateral cyclic loading in ABAQUS Explicit software. In addition, the numerical modeling for RC walls strengthened by CFRP composites as well as steel elements are validated according to the previous experimental... 

    Spinal muscle forces, internal loads and stability in standing under various postures and loads - Application of kinematics-based algorithm

    , Article European Spine Journal ; Volume 14, Issue 4 , 2005 , Pages 381-392 ; 09406719 (ISSN) Shirazi Adl, A ; El-Rich, M ; Pop, D. G ; Parnianpour, M ; Sharif University of Technology
    2005
    Abstract
    This work aimed to evaluate trunk muscle forces, internal loads and stability margin under some simulated standing postures, with and without external loads, using a nonlinear finite element model of the T1-S1 spine with realistic nonlinear load-displacement properties. A novel kinematics-based algorithm was applied that exploited a set of spinal sagittal rotations, initially calculated to minimize balancing moments, to solve the redundant active-passive system. The loads consisted of upper body gravity distributed along the spine with or without 200 N held in the hands, either in the front of the body or on the sides. Nonlinear and linear stability/perturbation analyses at deformed,... 

    Numerical simulation of vortex-induced vibration of a smooth circular cylinder at the subcritical regime

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 236, Issue 4 , 2022 , Pages 916-937 ; 14750902 (ISSN) Abbaspour, M ; Nemati Kourabbasloo, N ; Mohtat, P ; Tanha, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    The present paper focuses on the simulation of vortex-induced vibration (VIV) of a rigid, smooth circular cylinder with elastic supports subject to a cross-flow at the subcritical regime of Reynolds number, 30,000

    Numerical study of the effect of hemodynamic variables on LDL concentration through the single layer of the Left Anterior Descending coronary artery (LAD) under the heart pulse

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 7 , 2022 , Pages 994-1008 ; 09544119 (ISSN) Biglarian, M ; Seyedhossein, S. S ; Firoozabadi, B ; MomeniLarimi, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Heart attack is one of the most common causes of death in the world. Coronary artery disease is the most recognized cause of heart attack whose onset and progression have been attributed to low-density lipoprotein (LDL) passing through the wall of the artery. In this paper, hemodynamic variables as well as the concentration of LDL through the coronary porous artery at the Left Anterior Descending coronary artery (LAD), and its first diagonal branch (D1) under the heart motion investigated using computational simulation. The geometry that has been studied in this paper is the first bifurcation of Left Anterior Descending (LAD) that has been placed on a perimeter of hypothetical sphere... 

    Band-structure calculation of SH-waves in 1D hypersonic nano-sized phononic crystals with deformable interfaces

    , Article Mechanics of Materials ; Volume 171 , 2022 ; 01676636 (ISSN) Jam, M.T ; Shodja, H. M ; Sanati, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Nanoscopic interface deformations between the layers in a superlattice have a great impact on its phononic band-structure. This work aims to study the SH-wave band-structure in one-dimensional (1D) multilayer hypersonic nano-sized phononic crystals with consideration of local deformations at the interfaces of the layers. At this scale, the traditional theory of elasticity is unable to capture the realistic forbidden and permitted frequencies. Thus, in light of surface/interface elastodynamics theory for nanostructures with deformable interfaces, a mixed variational method which accounts for the notion of interface elasticity, deformability, and inertia is introduced in the present work. For... 

    Improved corrosion resistance and mechanical properties of biodegradable Mg-4Zn-xSr alloys: effects of heat treatment, Sr additions, and multi-directional forging

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 3363-3380 ; 22387854 (ISSN) Gerashi, E ; Alizadeh, R ; Mahmudi, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    The effects of Sr additions, heat treatment (T4 and T6), and multi-directional forging on the microstructural evolution, mechanical properties and biodegradability of Mg-4Zn-xSr alloys were investigated. Corrosion behavior of the alloys was evaluated by the polarization and hydrogen evolution tests. Shear punch and hardness tests were employed to determine the mechanical properties. It was found that mechanical properties and corrosion resistance of the as-cast Mg-4Zn alloy increased by 0.3 wt% Sr addition. However, further increasing the Sr content not only did not improve the mechanical strength, but also had detrimental effects on the corrosion resistance, due to the increased size and... 

    Investigation into the 3D behaviour of split-level steel building structures: introducing the LBDM

    , Article International Journal of Steel Structures ; Volume 22, Issue 3 , 2022 , Pages 833-850 ; 15982351 (ISSN) Khonsari, S. V ; Eskandaritorbaghan, F ; Sharif University of Technology
    Korean Society of Steel Construction  2022
    Abstract
    Irregular buildings constitute a large portion of the modern urban structures. Based on experiences of past earthquakes, irregular configuration of buildings or asymmetrical distribution of structural properties trigger an increase in seismic demand, intensifying the vulnerability of the structure. In this work, the effects of splitting in levels, classified as vertical irregularity, on the seismic behaviour of some 3D steel structures are studied. Studied models consisted of five-, ten- and fifteen-storey 3D steel special moment-resisting frames, split just in one direction, with six different plans. Equivalent static method together with a special pattern for distributing the base shear,... 

    Investigation of coronary artery tortuosity with atherosclerosis: A study on predicting plaque rupture and progression

    , Article International Journal of Mechanical Sciences ; Volume 223 , 2022 ; 00207403 (ISSN) Ebrahimi, S ; Fallah, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigated the effects of different patterns of coronary artery tortuosity (CAT) on the stress concentration of the plaques and the blood flow pattern inside an atherosclerotic artery to predict the risk of plaque rupture and progression. Four different loadings of the coronary artery, including pulsatile blood pressure as well as one-end twist around the artery axis at blood pressures of 74, 100, and 120 mmHg were considered. No study has addressed bent and twist buckling of an atherosclerotic artery considering pulsatile flow (for bent buckling), fluid-solid interaction, and different geometrical parameters of the plaque. The results showed that C-shape tortuosity under... 

    Patient-specific fluid–structure interaction simulation of the LAD-ITA bypass graft for moderate and severe stenosis: A doubt on the fractional flow reserve-based decision

    , Article Biocybernetics and Biomedical Engineering ; Volume 42, Issue 1 , 2022 , Pages 143-157 ; 02085216 (ISSN) Tajeddini, F ; Firoozabadi, B ; Pakravan, H. A ; Ahmadi Tafti, S. H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Fractional flow reserve (FFR)-based decision improves the outcomes of percutaneous coronary intervention (PCI) for some patients, while its effectiveness in improving the results of coronary artery bypass graft (CABG) is unclear, in particular for moderate stenosis. It may be due to the fact that FFR cannot take into account the impacts of competitive flow (CF), intimal hyperplasia (IH), as well as compliance mismatch (CMM). As a result, two questions arise 1) whether FFR is a sufficient factor to decide to perform the CABG for patients with moderate to severe stenosis or not and 2) whether post-operative FFR shows the effectiveness of a graft. To shed light on this matter, two... 

    Heat transfer of power-law fluids under electrowetting actuation in structured microchannels

    , Article International Communications in Heat and Mass Transfer ; Volume 130 , 2022 ; 07351933 (ISSN) Izadi, R ; Merdasi, A ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The dynamics and heat transfer performance of droplets play an important role in electrowetting systems. Contrary to the growing trend towards non-Newtonian fluids in electrotechnical systems, most researchers have focused on Newtonian fluids. In the current study, the interface is tracked by the phase-field method and afterwards, the numerical model is confirmed by comparing the results obtained from previous experimental and theoretical works. Several parameters such as power-law index and contact angle are analyzed. Furthermore, the dynamics and heat transfer of the droplets on chemically or topographically structured substrates in the presence of electrowetting are examined. It has been... 

    Magnetic field-induced control of a compound ferrofluid droplet deformation and breakup in shear flow using a hybrid lattice Boltzmann-finite difference method

    , Article International Journal of Multiphase Flow ; Volume 146 , 2022 ; 03019322 (ISSN) Majidi, M ; Bijarchi, M. A ; Ghorbanpour Arani, A ; Rahimian, M. H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The deformation and breakup dynamics of a compound ferrofluid droplet under shear flow and uniform magnetic field are numerically studied in this paper. Utilizing magnetic field provides the possibility to obtain better control over the compound droplet morphology and breakup in a simple shear flow. To solve the governing equations for interfaces motion and hydrodynamics, the conservative phase field lattice Boltzmann model is employed, and a finite difference approach is applied for calculating the magnetic field. To verify the accuracy of present simulations, the results are validated with those of four relevant benchmarks including liquid lens between two stratified fluids, three-phase... 

    Numerical-Experimental geometric optimization of the Ahmed body and analyzing boundary layer profiles

    , Article Journal of Optimization Theory and Applications ; Volume 192, Issue 1 , 2022 ; 00223239 (ISSN) Abdolmaleki, M ; Mashhadian, A ; Amiri, S ; Esfahanian, V ; Afshin, H ; Sharif University of Technology
    Springer  2022
    Abstract
    The trade-off between the fuel consumption and drag coefficient makes the investigations of drag reduction of utmost importance. In this paper, the rear-end shape optimization of Ahmed body is performed. Before changing the geometry, to identify the suitable simulation method and validate it, the standard Ahmed body is simulated using k − ω shear stress transport (SST) and k-epsilon turbulence models. The slant angle, rear box angle, and rear box length as variables were optimized simultaneously. Optimizations conducted by genetic algorithm (GA) and particle swarm optimization (PSO) methods indicate a 26.3% decrease in the drag coefficient. To ensure the validity of the results, a... 

    Free vibrations of functionally graded material cylindrical shell closed with two spherical caps

    , Article Ships and Offshore Structures ; Volume 17, Issue 4 , 2022 , Pages 939-951 ; 17445302 (ISSN) Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Free vibration response of a cylindrical shell closed with two hemispherical caps at the ends (hermit capsule) is analysed in this research. It is assumed that the system of joined shell is made from functionally graded materials (FGM). Properties of the shells are assumed to be graded through the thickness. Cylindrical and hemispherical shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first order theory of shells is used. Donnell type of kinematic assumptions are adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton's principle. The resulting... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of... 

    Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 192 , 2020 Dehghan-Baniani, D ; Chen, Y ; Wang, D ; Bagheri, R ; Solouk, A ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling... 

    Seismic Risk Assessment of Conventional Reinforced Concrete Building Structures Using Endurance Time Method

    , M.Sc. Thesis Sharif University of Technology Hosseini Varzandeh, Saeed (Author) ; Esmaeil Purestekanchi, Homayoon (Supervisor)
    Abstract
    This study aims to assess and compare the seismic performance of moment frame and dual reinforced concrete systems at different ductilities and seismicity levels. Seismic performance of the systems is defined as their efficiency in providing safety and reducing the life-cycle as well as the total cost of the buildings. For this purpose, 30 archetypes were designed in accordance with common Iranian codes, and their response at different seismic intensities was obtained by Endurance Time method. Afterward, the consequences of earthquakes were estimated according to FEMA-P58 guidelines, and the total cost of the buildings was determined. All of these archetypes had residential occupancy but... 

    Marangoni instabilities for convective mobile interfaces during drop exchange: Experimental study and CFD simulation

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 441, issue , 2014 , pp. 846-854 ; ISSN: 09277757 Javadi, A ; Karbaschi, M ; Bastani, D ; Ferri, J. K ; Kovalchuk, V. I ; Kovalchuk, N. M ; Javadi, K ; Miller, R ; Sharif University of Technology
    Abstract
    The inflow pattern of liquid into a droplet is studied experimentally using a surface active dye and compared with results of CFD simulations. The results show visual agreement between experiments and simulations. The CFD simulations show also good agreement with the surface tension measured by drop profile analysis tensiometry (PAT). The inflow of the surfactant induces a Marangoni instability caused by the local arrival of the surfactant at the drop surface. The onset of this Marangoni instability observed experimentally has a delay of about 10. s when compared with the simulation results. Different scenarios are discussed, including a boundary layer barrier, a kinetic-controlled... 

    Trunk muscle fatigue and its implications in EMG-assisted biomechanical modeling

    , Article International Journal of Industrial Ergonomics ; Volume 43, Issue 5 , 2013 , Pages 425-429 ; 01698141 (ISSN) Haddad, O ; Mirka, G.A ; Sharif University of Technology
    2013
    Abstract
    Muscle fatigue affects the underlying EMG-force relationship on which EMG-assisted biomechanical models rely. The aim of this study was to evaluate the impact of short duration muscle fatigue on the muscle gain value. Participants performed controlled, isometric trunk extension exertions at 10, 20, and 30 degrees of trunk flexion and controlled isokinetic trunk extension exertions at 5 and 15°/sec on five separate days. Fatigue of the lumbar extensors was generated by moderate-intensity, trunk extension exertions. Participants performed controlled test contractions at defined intervals throughout the fatiguing bout and the EMG activities of trunk muscles were collected. These EMG data were... 

    Mold filling simulation in the injection molding process with openFOAM software for non-isothermal newtonian fluid

    , Article Proceedings of the 2nd IASTED Asian Conference on Modelling, Identification, and Control, AsiaMIC 2012 ; 2012 , Pages 291-296 ; 9780889869110 (ISBN) Fazelpour, F ; Vafaeipour, M ; Etemadi, H ; Dabbaghian, A ; Bardestani, R ; Dehghan, M ; Sharif University of Technology
    2012
    Abstract
    Injection molding is one of the most important manufacturing processes for mass production of complex plastic parts. In this study, mold filling is simulated by using the OpenFOAM software for Non- isothermal Newtonian fluid. The OpenFOAM is an open source software that is used in Computational Fluid Dynamics (CFD) tools. The studied mold shape has a rectangular structure with a gate for Newtonian fluid injection. The simulation carried out at non-isothermal conditions and two-dimensional flow is considered. The velocity, shear stress and temperature changes in different parts of the mold are critically studied. We show that vortex formation plays an important role on changes of shear stress... 

    Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 55, Issue 4 , January , 2012 , Pages 762-772 ; 00179310 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye-Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be...