Loading...
Search for: solar-heating
0.013 seconds
Total 30 records

    Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology

    , Article Solar Energy ; Volume 84, Issue 9 , September , 2010 , Pages 1696-1705 ; 0038092X (ISSN) Nezammahalleh, H ; Farhadi, F ; Tanhaemami, M ; Sharif University of Technology
    2010
    Abstract
    Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF).This study shows that... 

    An experimental evaluation of copper, steel and polypropylene tubes in solar water heaters with thermosyphonic flow

    , Article Applied Solar Energy (English translation of Geliotekhnika) ; Volume 45, Issue 1 , 2009 , Pages 65-69 ; 0003701X (ISSN) Riazi, M. R ; Razavi, J ; Sadeghi, A ; Javaheri, A ; Sharif University of Technology
    2009
    Abstract
    In this paper we report experimental results for the performance and rate of heat transfer in copper tubes in solar water heaters with thermosyphonic flow in continuation of experimental data reported in previous publications (Solar Energy, 2003, vol. 74, pp. 441-445, and Energy Sources, 1997, vol. 19, pp. 147-152). We also show a comparison between performances of three kinds of tubes: copper, polypropylene and steel under similar conditions. An analytical relation for calculation of rate of heat transfer in copper tubes is also presented in terms of Nusselt versus Reynolds and Prantdl numbers. A comparison of experimental data showed that performance of copper tubes is slightly better than... 

    Comparison of performance prediction of solar water heaters between artificial neural networks and conventional correlations

    , Article International Journal of Global Energy Issues ; Volume 31, Issue 2 , 2009 , Pages 122-131 ; 09547118 (ISSN) Razavi, J ; Riazi, M. R ; Raoufi, F ; Sadeghi, A ; Sharif University of Technology
    2009
    Abstract
    The aim of this study was to develop a predictive method for heat transfer coefficients in solar water heaters and their performance evaluation of such heaters with different materials used as heat collectors. Two approaches have been used: conventional method and an Artificial Neural Network (ANN) to predict the performance of solar water heaters and to compare these two approaches. This performance is measured in terms of outlet temperature by using a set of conventional feed forward multi-layer neural networks. The actual experimental data which were used as our network's input gathered from published literature (for polypropylene tubes) and from the experiments carried out recently using... 

    Experimental determination of natural convection heat transfer coefficient in a vertical flat-plate solar air heater

    , Article Solar Energy ; Volume 82, Issue 10 , 2008 , Pages 903-910 ; 0038092X (ISSN) Hatami, N ; Bahadorinejad, M ; Sharif University of Technology
    2008
    Abstract
    In this study, natural convection heat transfer in a vertical flat-plate solar air heater of 2.5 m height and 1 m width, with one- and two-glass covers was studied experimentally. Totally six cases of airflow (two for air heater with one glass cover and four for air heater with two-glass covers) were considered. These cases included states that air could flow within spaces between absorber plate and glass covers or air was enclosed in such spaces. Absorber plate temperature, back-plate temperature, glass cover temperatures, mass flow rates of air within channels and the solar radiation were measured. The following relations are suggested:. For channels in which air could flow:Nu = 0.7362... 

    Dynamic System Optimal Design Model: Designing and Evaluation of Turboexpander System Operation

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi Saryazdi, Mohammad (Author) ; Saboohi, Yadoolah (Supervisor)
    Abstract
    According to Iran’s energy policies, the natural gas transmission pipeline has expanded significantly over the last decade. Moreover, improving energy efficiency is known as a key strategy in energy policies and programs. Therefore, the need for expansion and development of the rational use of energy has received more and more attention. The use of technologies aimed at energy recovery will be an effective step in this regard. Pressure regulators are most commonly used to reduce this pressure in Iran as one of the significant sources of exergy destruction in Iranian gas transmission system. The turbo-expander system is a kind of technology applied in gas pressure reduction stations to... 

    Thermally Driven Exchange Flow Between Open Water and Floating Vegetation

    , M.Sc. Thesis Sharif University of Technology Sharifi, Elham (Author) ; Jamali, Mirmosadegh (Supervisor)
    Abstract
    In this thesis, we present the results of a laboratory and numerical model study of the exchange flow generated by the temperature gradient between an open water heated by sunlight and a canopy area made of floating vegetation. Particle Image Velocimetry is employed to obtain the structures of the warm flow intruding the canopy at the surface and the bottom cold return flow for different roots length and vegetation density. Following an initial, transient stage of flow build-up governed by a balance between inertia and buoyancy forces, the flow reaches a steady state in the canopy area with a force balance between buoyancy and vegetation drag dominating the flow within roots. At the steady... 

    Numerical and Experimental Investigation of Thermally Driven Exchange Flow and Wind set up in Canopy Steep Area

    , M.Sc. Thesis Sharif University of Technology Davari, Andisheh (Author) ; Jamali, Mirmosaddegh (Supervisor)
    Abstract
    Solar heating in aqautic systems, causes tempreture increasing.This temperature difference will promote an exchange flow between the vegetation and open water. The exchange flow generated by the differential heating and cooling associated with depth variation has also been studied through laboratory experiment and modelling. Differential solar heating can result from shading by rooted emergent aquatic plants, producing a temperature difference between vegetated and unvegetated regions of a surface water body. Horizontal density difference between shaded and open water regions drives currents that carry fluxes between biologically and chemically distinct regions of an aquatic system. Such... 

    A thorough investigation of the effects of water depth on the performance of active solar stills

    , Article Desalination ; Vol. 347 , 2014 , Pages 77-85 ; ISSN: 00119164 Taghvaei, H ; Taghvaei, H ; Jafarpur, K ; Karimi Estahbanati, M. R ; Feilizadeh, M ; Feilizadeh, M ; Seddigh Ardekani, A ; Sharif University of Technology
    Abstract
    One of the most important operating parameters which affects the performance and efficiency of active solar stills is brine depth. In all of the previous experimental or theoretical studies, effects of water depth were investigated during only the first 24-hour period (or even shorter periods) of the operation of active solar stills. In other words, only the first day was taken into account. However, the production of an active solar still depends on several parameters such as brine temperature at sunrise (initial temperature), which are all affected by the depth variation after the first day of operation. However, the present research experimentally investigates the long-term effects of... 

    Introducing a dimensionless number as tank selector in hybrid solar thermal energy storage systems

    , Article Journal of Mechanical Science and Technology ; Volume 25, Issue 4 , 2011 , Pages 871-876 ; 1738494X (ISSN) Mohamadi, Z. M ; Zohoor, H ; Sharif University of Technology
    Abstract
    Using hybrid energy storage system is a method for increasing the storage capability of solar thermal energy. If multiple energy storage devices with complementary performance characteristics are used together, the resulting system will be a 'Hybrid Energy Storage System'. In other words, a Hybrid Energy Storage System (HESS) has several media available for storage at any time. In this way, increase in storable energy is obtained without increasing collectors' area. When there are more than one storage mediums, the system should be able to choose the best medium for storing energy according to the conditions. In the previous works, an optimizer program was used to find the proper medium... 

    Optimization of geometrical dimensions of single-slope basin-type solar stills

    , Article Desalination ; Volume 424 , 2017 , Pages 159-168 ; 00119164 (ISSN) Feilizadeh, M ; Soltanieh, M ; Karimi Estahbanati, M. R ; Jafarpur, K ; Ashrafmansouri, S. S ; Sharif University of Technology
    Abstract
    In the present work, effects of height, length, and width of a single-slope basin-type solar still on its distillate production was investigated. For this purpose, a radiation model was developed which accounts for the influences of all walls on quantities of received solar radiation by the base and saline water of the still. Moreover, in this radiation model, the side walls of the still were considered as the trapezoid and the diffuse as well as beam components of solar irradiance were separately taken into account for the first time. Abilities of the present model were compared with earlier ones. Furthermore, the predictions of the current model were compared with the present experimental...