Loading...
Search for: solar-power
0.011 seconds
Total 149 records

    Surface passivation of titanium dioxide via an electropolymerization method to improve the performance of dye-sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 15 , 2016 , Pages 12537-12543 ; 20462069 (ISSN) Mazloum Ardakani, M ; Khoshroo, A ; Taghavinia, N ; Hosseinzadeh, L ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    In dye-sensitized solar cells recombination reactions at the TiO2 photoanode with the electrolyte interface plays a critical role in cell efficiency. Recombination of injected electrons in the TiO2 with acceptors in the electrolyte usually occurs on uncovered areas of TiO2 surfaces. In this work, we report electropolymerization of polymer films on nanoporous TiO2 electrode surfaces using an ionic liquid as the growth medium. The choice of ionic liquid as the growth medium for this study is based on the insolubility of dye N719 in this electrolyte, thus avoiding dye molecule detachment from the TiO2 photoanode surface over the entire potential range investigated during the... 

    Stable and efficient CuO based photocathode through oxygen-rich composition and Au-Pd nanostructure incorporation for solar-hydrogen production

    , Article ACS Applied Materials and Interfaces ; Volume 9, Issue 33 , 2017 , Pages 27596-27606 ; 19448244 (ISSN) Masudy Panah, S ; Siavash Moakhar, R ; Chua, C. S ; Kushwaha, A ; Dalapati, G. K ; Sharif University of Technology
    Abstract
    Enhancing stability against photocorrosion and improving photocurrent response are the main challenges toward the development of cupric oxide (CuO) based photocathodes for solar-driven hydrogen production. In this paper, stable and efficient CuO-photocathodes have been developed using in situ materials engineering and through gold-palladium (Au-Pd) nanoparticles deposition on the CuO surface. The CuO photocathode exhibits a photocurrent generation of ∼3 mA/cm2 at 0 V v/s RHE. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and X-ray spectroscopy (XPS) confirm the formation of oxygen-rich (O-rich) CuO film which demonstrates a highly stable photocathode with retained... 

    Resolving a critical instability in perovskite solar cells by designing a scalable and printable carbon based electrode-interface architecture

    , Article Advanced Energy Materials ; Volume 8, Issue 31 , 2018 ; 16146832 (ISSN) Mashhoun, S ; Hou, Y ; Chen, H ; Tajabadi, F ; Taghavinia, N ; Egelhaaf, H. J ; Brabec, C. J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Thin-film solar cells based on hybrid organo-halide lead perovskites achieve over 22% power conversion efficiency (PCE). A photovoltaic technology at such high performance is no longer limited by efficiency. Instead, lifetime and reliability become the decisive criteria for commercialization. This requires a standardized and scalable architecture which does fulfill all requirements for larger area solution processing. One of the most highly demanded technologies is a low temperature and printable conductive ink to substitute evaporated metal electrodes for the top contact. Importantly, that electrode technology must have higher environmental stability than, for instance, an evaporated silver... 

    Development of the energy hub networks based on distributed energy technologies

    , Article Simulation Series, 26 July 2015 through 29 July 2015 ; Volume 47, Issue 10 , 2015 , Pages 216-223 ; 07359276 (ISSN) Maroufmashat, A ; Elkamel, A ; Sattari Khavas, S ; Fowler, M ; Roshandel, R ; Elsholkami, M ; Sharif University of Technology
    The Society for Modeling and Simulation International  2015
    Abstract
    In this paper the creation of multiple energy hubs that make up a complex energy network are modeled and optimized for a selection of six scenarios to examine both their financial viability and potential reduction of greenhouse gas emissions. As a proposed case study scenario for the model, three energy hubs are considered: a 'residential complex (RC)', a 'commercial shopping plaza (CS)', and a 'school (S)'. The use of combined heat and power systems, solar photovoltaic, solar collectors and network interaction are also examined for their impact on efficiency and cost. The modeling is undertaken and carried out by General Algebraic Modeling System (GAMS). It is shown that cost can be reduced... 

    Broadband and low-loss plasmonic Light trapping in dye-sensitized solar cells using micrometer-scale rodlike and spherical core-shell plasmonic particles

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 25 , 2016 , Pages 16359-16367 ; 19448244 (ISSN) Malekshahi Byranvand, M ; Nemati Kharat, A ; Taghavinia, N ; Dabirian, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; Volume 90, Issue 1 , 2017 , Pages 53-67 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Strong short-term non-linearity of solar irradiance fluctuations

    , Article Solar Energy ; Volume 144 , 2017 , Pages 1-9 ; 0038092X (ISSN) Madanchi, A ; Absalan, M ; Lohmann, G ; Anvari, M ; Rahimi Tabar, M. R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    We investigate short-term non-linearity of solar irradiance fluctuations using the multifractal detrended fluctuation analysis (MFDFA). The MFDFA shows that time series of solar irradiance have a long range correlation function with a multifractal behavior. We apply this method to solar irradiance time series from several regions around the world with resolutions of seconds and minutes. The obtained generalized Hurst and Renyi exponents h(q) and τ(q) suggest the non-linear and non-stationary essence of measured irradiance time series. Also, we analyze shuffled, random phase, and rank-wised surrogated data to reveal the nature of the multifractality and conclude that linear and non-linear... 

    A novel thermo-photovoltaic cell with quantum-well for high open circuit voltage

    , Article Superlattices and Microstructures ; Volume 83 , July , 2015 , Pages 61-70 ; 07496036 (ISSN) Kouhsari, E. S ; Faez, R ; Akbari Eshkalak, M ; Sharif University of Technology
    Academic Press  2015
    Abstract
    Abstract We design a thermo-photovoltaic Tandem cell which produces high open circuit voltage (Voc) that causes to increase efficiency (η). The currently used materials (AlAsSb-InGaSb/InAsSb) have thermo-photovoltaic (TPV) property which can be a p-n junction of a solar cell, but they have low bandgap energy which is the reason for lower open circuit voltage. In this paper, in the bottom cell of the Tandem, there is 30 quantum wells which increase absorption coefficients and quantum efficiency (QE) that causes to increase current. By increasing the current of the bottom cell, the top cell thickness must be increased because the top cell and the bottom cell should have the same current. In... 

    A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 2115-2127 ; 09601481 (ISSN) Khalilmoghadam, P ; Rajabi Ghahnavieh, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a latent heat storage unit and built-in condenser were integrated with a solar still. Storage of dissipated latent heat of vapor during the day and using it after sunset prolongs system operation. During the day, the entire solar radiation was consumed to heat the saline water and only the heat coming from the condensation of vapor was stored in the phase change material (PCM). The dissipated heat from the condenser body was transferred to the PCM and stored. Additionally, the existence of PCM on the outer surfaces of the condenser prevented the rise of condenser wall temperature during the day and kept the condenser temperature low. After sunset, the heat stored in the PCM... 

    An integrated process configuration of solid oxide fuel/electrolyzer cells (SOFC-SOEC) and solar organic Rankine cycle (ORC) for cogeneration applications

    , Article International Journal of Energy Research ; Volume 45, Issue 7 , 2021 , Pages 11018-11040 ; 0363907X (ISSN) Khalili, M ; Karimian Bahnamiri, F ; Mehrpooya, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    This research work presents a novel integrated structure for the cogeneration of electricity and renewable syngas. The base structure of the process is developed by solid oxide cells in which electricity is generated by the natural gas-fueled fuel cell unit, and renewable syngas is produced by the electrolyzer cell unit. Direct integration between fuel cell and electrolyzer cell units is established for optimal use of fuel cell off-gases. To improve system's sustainability, a solar power cycle, including solar collectors coupled with an organic Rankine cycle (ORC), is designed to provide renewable electricity for steam and CO2 co-electrolysis operation. 1D mathematical approaches are... 

    Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid

    , Article Solar Energy ; Volume 173 , 2018 , Pages 1236-1247 ; 0038092X (ISSN) Khakrah, H ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Parabolic trough solar collector (PTC) is one of the most mature and widely used type of solar energy harnessing devices. Therefore, investigation of the effect of various operational conditions on the overall efficiency of these devices has been topic of substantial interest in the recent decade. Moreover, utilization of nanoparticles as a useful additive to the working fluid should be examined thoroughly to optimize the collector's outputs. To do so, in the present study, energy and exergy efficiencies of a typical PTC as a function of several involving parameters are numerically calculated. These parameters are nanoparticle volume fraction (from 0 to 5 percent), environment wind speed... 

    Smoothing and coverage improvement of SnO2 electron transporting layer by NH4F treatment: Enhanced fill factor and efficiency of perovskite solar cells

    , Article Solar Energy ; Volume 228 , 2021 , Pages 253-262 ; 0038092X (ISSN) Keshtmand, R ; Zamani Meymian, M. R ; Mohamadkhani, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Surface modification of SnO2 electron transporting layer (ETL) plays a critical role in the performance of SnO2-based planar perovskite solar cells (PSC). Here, we show how long-time NH4F-based water bath treatment of SnO2 layer makes smoothing and morphological improvements and enhances the device performance. Recently it was shown that short-time NH4F treatment (2 sec) with spin coating method reduces interface traps by improving surface chemistry. Here we observe the smoothing of SnO2 films as a result of long-time NH4F treatment, which could be a result of a slight etching-deposition process. Absorption and resistivity measurements indicate that SnO2 etching process is involved in... 

    Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis

    , Article Solar Energy ; Volume 215 , 2021 , Pages 492-507 ; 0038092X (ISSN) Kazemian, A ; Parcheforosh, A ; Salari, A ; Ma, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The solar collectors absorb solar irradiation and then produce thermal energy; however, they cannot generate electrical power. Electricity and thermal energy can be produced by the photovoltaic thermal module, simultaneously, while the outlet temperature of the photovoltaic thermal module is not usually high enough to provide thermal requirements of a building such as hot water or space heating. This work proposes a novel compound system created by the connection of a solar collector in series with a photovoltaic thermal module to resolve the issue of low outlet temperature in the photovoltaic thermal module and lack of electrical power in solar collectors. To examine the feasibility of this... 

    Experimental investigation of a multi-effect active solar still: The effect of the number of stages

    , Article Applied Energy ; Volume 137 , 2015 , Pages 46-55 ; 03062619 (ISSN) Karimi Estahbanati, M. R ; Feilizadeh, M ; Jafarpur, K ; Feilizadeh, M ; Rahimpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this work, the effect of the number of stages on the productivity of a multi-effect active solar still was experimentally investigated for the first time. Moreover, system performances in continuous and non-continuous modes were compared. For this purpose, indoor experiments were conducted on 4 similar solar still devices with different stages (1-4 stages) in order to accurately control the environmental conditions. In addition, water production was hourly measured during the whole 24-h experiment. The results show that with increased number of stages, distillate production can be predicted with a quadratic function. Moreover, adding a maximum of 6 and 10 additional stages can... 

    A novel integrated solar desalination system with a pulsating heat pipe

    , Article Desalination ; Volume 311 , 2013 , Pages 206-210 ; 00119164 (ISSN) Kargar Sharif Abad, H ; Ghiasi, M ; Jahangiri Mamouri, S ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    The application of the solar energy in thermal desalination devices is one of the most beneficial applications of the renewable energies. In this study, a novel solar desalination system is introduced, which is benefited from the undeniable advantages of pulsating heat pipe (PHP) as a fast responding, flexible and high performance thermal conducting device. Results show a remarkable increase in the rate of desalinated water production and the maximum production reaches up to 875mL/(m2.h). However, the optimum water depth in basin and the filling ratio of the PHP are measured 1cm and 40%, respectively  

    Finding the best station in Belgium to use residential-scale solar heating, One-year dynamic simulation with considering all system losses: Economic analysis of using ETSW

    , Article Sustainable Energy Technologies and Assessments ; Volume 45 , June , 2021 ; 22131388 (ISSN) Kalbasi, R ; Jahangiri, M ; Mosavi, A ; Jalaladdin Hosseini Dehshiri, S ; Shahabaddin Hosseini Dehshiri, S ; Ebrahimi, S ; Al Sadat Etezadi, Z ; Karimipour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The main purpose of this study is to provide the heating power for space heating and sanitary hot water for a residential house in sixteen stations located in Belgium using evacuated tube solar water (ETSW). A one-year dynamic simulation was performed using TSOL 5.5 software and Meteonorm 7.1 was used to obtain the climatic data. Technical and environmental studies as well as station rankings are the parameters that have been examined for the first time in the present study. The weighting results of using the Best-Worst method (BWM) revealed that total solar fraction and CO2 emission avoided have the highest and lowest weight, respectively. Station ranking was performed using ARAS technique... 

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    , Article Energies ; Volume 14, Issue 24 , 2021 ; 19961073 (ISSN) Javed, H ; Muqeet, H. A ; Shehzad, M ; Jamil, M ; Khan, A. A ; Guerrero, J. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    An energy management system (EMS) was proposed for a campus microgrid (μG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a... 

    Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors

    , Article Journal of Building Engineering ; Volume 43 , November , 2021 ; 23527102 (ISSN) Jalalizadeh, M ; Fayaz, R ; Delfani, S ; Jafari Mosleh, H ; Karami, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Solar systems are the most promising technologies to reduce building energy consumption. In recent years, one of the popular solar technologies is building integrated photovoltaic-thermal collectors, because of profitability and no need for separate architectural space. In this study, a new combination of glazed building integrated photovoltaic thermal solar collectors and an absorption cooling system, as a trigeneration system, to provide thermal and electrical energy demands of a case study residential building, is proposed. Dynamic simulation of the proposed system is performed using the TRNSYS-MATLAB co-simulator. Because there is no model for the glazed photovoltaic thermal solar... 

    Cooperative hybrid ARQ in solar powered wireless sensor networks

    , Article Microelectronics Reliability ; Volume 52, Issue 12 , 2012 , Pages 3043-3052 ; 00262714 (ISSN) Jalali, F ; Khodadoustan, S ; Ejlali, A ; Sharif University of Technology
    2012
    Abstract
    Energy harvesters are used in today's Wireless Sensor Networks (WSNs) to harvest energy from the environment. Although an energy harvester can provide a supply source with a much greater lifetime than a battery, the amount of available energy for an energy harvesting system is a random variable. Furthermore, the proper management of energy harvesters has a considerable impact on reliability. It has been observed that cooperative error control mechanisms like Cooperative Automatic Repeat Request (C-ARQ) and Cooperative Hybrid ARQ (C-HARQ) can be used for improving the energy management and reliability in Energy Harvesting WSNs (EH-WSNs). Recently, the impact of C-ARC mechanism has been...