Loading...
Search for: solar-powered
0.008 seconds
Total 170 records

    Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant

    , Article Solar Energy ; Volume 153 , 2017 , Pages 153-172 ; 0038092X (ISSN) Mostafavi Tehrani, S. S ; Taylor, R. A ; Nithyanandam, K ; Shafiei Ghazani, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study conducts a comprehensive comparative techno-economic analysis of some near-term sensible thermal energy storage (TES) alternatives to the ‘standard’ two-tank molten salt system for concentrated solar power (CSP) plants. As such, we conducted detailed, relative annual transient simulations for single-medium thermocline (SMT), dual-media thermocline (DMT), and shell-and-tube (ST) systems. To be consistent with recent literature, the DMT and ST systems use concrete with a porosity of 0.2 (e.g. where concrete occupies 80% of the system) as their low cost filler material. The systems were integrated into a validated 19.9 MWe Gemasolar CSP model, which has a solar multiple of... 

    Modeling and Optimal Design of a Solar Chimney Power Plant

    , M.Sc. Thesis Sharif University of Technology Gharagozlou, Ali (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    The power generation system of this type of power plants operates on the air flowing through the power plant’s chimney and colliding with the turbine blades within the chimney. When the solar collector warms the nearby air and thus expands the air by absorbing the sunlight, a difference is created in the density. Then, this difference in the density creates the phenomenon of buoyancy, making the air pass to the top of the chimney through the collector.This study simulated and optimized a solar chimney power plant. The simulation and optimization were performed based on the information of Manzanares Solar Chimney Power Plant in Spain (located in 150 km from the south of Madrid). It was... 

    Theoretical and Experimental Investigation of Preparation of Distillate Water by Combination of CSP and MED Methods

    , M.Sc. Thesis Sharif University of Technology Najafi Sani, Mohammad Ali (Author) ; Molaee Dehkordi, Asghar (Supervisor)
    Abstract
    With the depletion of fossil resources, price of these energy careers increases. Therefore, researchers investigate for other alternative choices. One of the most interesting choice is the renewable energies. These sources of energies are attractive due to either they are permanent resources or they are environmentally friendly. The most important renewable energy resource is solar energy that in fact is the source of other renewable energies. The most important and economic method of solar energy absorption is the thermal method. Common technology in thermal method is the Parabolic-Trough. But, recently a new technology have been developed called Compact Linear Fresnel Reflector (CLFR) that... 

    Equipment Hardening Strategies to Improve Electric Distribution System Resilience Against Wildfire

    , M.Sc. Thesis Sharif University of Technology Talebi, Amir Hossein (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    The severe wildfires in California, Australia, Canada, and Iran have interrupted the power system operation, caused multiple blackouts, took many lives, and caused damages to power grid infrastructure to the extent of millions and billions of dollars. Most of the recent wildfires occur in the distribution system. Therefore, enhancing power system distribution resilience against wildfire is crucial.To this end, two groups of measures are proposed: the hardening of the power network and the operational measures. The past published papers mainly studied the resilience enhancement strategies against wildfire from an operational perspective. There is a considerable gap between the past works... 

    Technical and Economical Potential for Application of Solar Energy in Enhanced Oil Recovery

    , M.Sc. Thesis Sharif University of Technology Najafi, Homayoun (Author) ; Ayatollahi, Shahabodin (Supervisor) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    In this thesis, the application of solar energy in the steam injection as a thermal enhanced oil recovery (TEOR) is evaluated. The motivations of this project are using a renewable energy, suitable solar potential of Iran, successful experience in the world, undeveloped heavy oilfield reservoirs in Iran. This application is investigated by three aspects which are:Reservoir Engineering aspect: the heavy oilfield are determined and then screening for selection good candidate of steam injection are done. One of the reservoirs is analyzed by simulation and optimization the steam injection to determine how much it’s production will be improved by using steam injection (contionous and cyclic)... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 ; 2013 , p. 483-488 ; ISBN: 9781470000000 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Othman, M ; Sharif University of Technology
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    A thorough investigation of the effects of water depth on the performance of active solar stills

    , Article Desalination ; Vol. 347 , 2014 , Pages 77-85 ; ISSN: 00119164 Taghvaei, H ; Taghvaei, H ; Jafarpur, K ; Karimi Estahbanati, M. R ; Feilizadeh, M ; Feilizadeh, M ; Seddigh Ardekani, A ; Sharif University of Technology
    Abstract
    One of the most important operating parameters which affects the performance and efficiency of active solar stills is brine depth. In all of the previous experimental or theoretical studies, effects of water depth were investigated during only the first 24-hour period (or even shorter periods) of the operation of active solar stills. In other words, only the first day was taken into account. However, the production of an active solar still depends on several parameters such as brine temperature at sunrise (initial temperature), which are all affected by the depth variation after the first day of operation. However, the present research experimentally investigates the long-term effects of... 

    Modeling and technical-economic optimization of electricity supply network by three photovoltaic systems

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Vol. 136, issue. 2 , 2014 ; ISSN: 0199-6231 Safarian, S ; Khodaparast, P ; Kateb, M ; Sharif University of Technology
    Abstract
    To attain an ongoing electricity economy, developing novel widespread electricity supply systems based on diverse energy resources are critically important. Several photovoltaic (PV) technologies exist, which cause various pathways to produce electricity from solar energy. This paper evaluates the competition between three influential solar technologies based on photovoltaic technique to find the optimal pathways for satisfying the electricity demand: (1) multicrystalline silicon; (2) copper, indium, gallium, and selenium (CIGS); and (3) multijunction. Besides the technical factors, there are other effective parameters such as cost, operability, feasibility, and capacity that should be... 

    Incorporating large photovoltaic farms in power generation system adequacy assessment

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 924-934 ; 10263098 Ghaedi, A ; Abbaspour, A ; Fotuhi-Friuzabad, M ; Parvania, M ; Sharif University of Technology
    Abstract
    Recent advancements in photovoltaic (PV) system technologies have decreased their investment cost and enabled the construction of large PV farms for bulk power generations. The output power of PV farms is affected by both failure of composed components and solar radiation variability. These two factors cause the output power of PV farms be random and different from that of conventional units. Therefore, suitable models and methods should be developed to assess different aspects of PV farms integration into power systems, particularly from the system reliability viewpoint. In this context a reliability model has been developed for PV farms with considering both the uncertainties associated... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 2013, Article , Pages 483-488 ; number 6564597 , 2013 , Pages 483-488 ; 9781467350730 (ISBN) Ghaedi, A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Othman, M ; Sharif University of Technology
    2013
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    A novel integrated solar desalination system with a pulsating heat pipe

    , Article Desalination ; Volume 311 , 2013 , Pages 206-210 ; 00119164 (ISSN) Kargar Sharif Abad, H ; Ghiasi, M ; Jahangiri Mamouri, S ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    The application of the solar energy in thermal desalination devices is one of the most beneficial applications of the renewable energies. In this study, a novel solar desalination system is introduced, which is benefited from the undeniable advantages of pulsating heat pipe (PHP) as a fast responding, flexible and high performance thermal conducting device. Results show a remarkable increase in the rate of desalinated water production and the maximum production reaches up to 875mL/(m2.h). However, the optimum water depth in basin and the filling ratio of the PHP are measured 1cm and 40%, respectively  

    ANN and ANFIS models to predict the performance of solar chimney power plants

    , Article Renewable Energy ; Volume 83 , November , 2015 , Pages 597-607 ; 09601481 (ISSN) Amirkhani, S ; Nasirivatan, S ; Kasaeian, A. B ; Hajinezhad, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A precise model of the behavior of complex systems such as solar chimney power plants (SCPP) would be much beneficial. Also, such a model would be quite contributing to the control of solar chimney operation. In this paper, the identification and modeling of SCPP utilizing ANN and Adaptive Neuro Fuzzy Inference System (ANFIS) are discussed. The modeling is based on the data of three working days which were taken of a built pilot in University of Zanjan, Iran. The input parameters are time, radiation and ambient temperature, while the output is the air velocity at the inlet of the chimney. The results of ANN model and ANFIS model were compared; it was found that ANFIS model exhibited better... 

    Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells

    , Article Journal of Physical Chemistry C ; Volume 119, Issue 33 , 2015 , Pages 18886-18895 ; 19327447 (ISSN) Tavakoli, M. M ; Aashuri, H ; Simchi, A ; Kalytchuk, S ; Fan, Z ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Hybrid nanostructures combining semiconductor quantum dots and graphene are attracting increasing attention because of their optoelectronic properties promising for photovoltaic applications. We present a hot-injection synthesis of a colloidal nanostructure which we define as quasi core/shell PbS/graphene quantum dots due to the incomplete passivation of PbS surfaces with an ultrathin layer of graphene. Simulation by density functional theory of a prototypical model of a nonstoichiometric Pb-rich core (400 atoms) coated by graphene (20 atoms for each graphene sheet) indicates the possibility of surface passivation of (111) planes of PbS with graphene resulting in a decrease in trap states... 

    Improved photovoltaic performance of nanostructured solar cells by neodymium-doped TiO2 photoelectrode

    , Article Materials Letters ; Volume 159 , November , 2015 , Pages 273-275 ; 0167577X (ISSN) Shogh, S ; Mohammadpour, R ; Zad, A. I ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Well-crystallized TiO2 and neodymium (Nd)-doped TiO2 nanoparticles with various doping levels were synthesized by hydrothermal method and utilized as the photoanode of nanostructured solar cells. The results indicated that Nd-doping was caused the absorption spectra shift to higher wavelength while the morphology and surface area were unchanged. As a result, by employing 0.4 mol% Nd in the TiO2 photoelectrode, the overall conversion efficiency of the cell reached 9.08% which is 26% higher than pure one. Based on the photo-electrochemical characterizations, the improvement is a consequence of electrons injection increment from dye to TiO2 conduction... 

    An experimental study on using natural vaporization for cooling of a photovoltaic solar cell

    , Article International Communications in Heat and Mass Transfer ; Volume 65 , 2015 , Pages 22-30 ; 07351933 (ISSN) Ebrahimi, M ; Rahimi, M ; Rahimi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This study attempts to investigate a new way for cooling PV cell using natural vapor as coolant. The performance of solar cell was examined on simulated sunlight. The natural vapor encountered backside of PV cell vertically in various distribution and different mass flow rates. Also, the effect of natural vapor temperature in cooling performance was analyzed. Results indicated that the temperature of PV cell drops significantly with increasing natural vapor mass flow rate. In detail, the PV cell temperature decreased about 7 to 16°C when flow rate reaches 1.6 to 5grmin-1. It causes increasing electrical efficiency about 12.12% to 22.9%. The best performance of PV cell can be achieved at high... 

    Experimental investigation of the effect of solar collecting area on the performance of active solar stills with different brine depths

    , Article Desalination ; Volume 358 , 2015 , Pages 76-83 ; 00119164 (ISSN) Taghvaei, H ; Taghvaei, H ; Jafarpur, K ; Feilizadeh, M ; Karimi Estahbanati, M. R ; Sharif University of Technology
    Abstract
    Solar collecting area is one of the most important operating parameters of active solar stills. No experimental work has been performed to investigate the effect of this parameter to date. Furthermore in all of previous theoretical studies the effect of solar collecting area was examined during only the first 24-hour period of the operation of stills with one specified brine depth. However the present work experimentally studies the long-term simultaneous effects of collector area and brine depth on the performance of active solar stills. For this purpose four parallel active solar stills with different collector areas were fabricated and experiments were conducted for 5 consecutive days... 

    Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells

    , Article Applied Solar Energy (English translation of Geliotekhnika) ; Volume 51, Issue 1 , January , 2015 , Pages 34-40 ; 0003701X (ISSN) Boroomandnia, A ; Kasaeian, A. B ; Nikfarjam, A ; Akbarzadeh, A ; Mohammadpour, R ; Sharif University of Technology
    Allerton Press Incorporation  2015
    Abstract
    A comparative study has been made of hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and different nano-structures of TiO2. Electrospinning, which is a low cost production method for large area nanofibrous films, was employed to fabricate TiO2 nanofibers and spin coating method was employed to fabricate organic-inorganic hybrid solar cells based on P3HT and TiO2 nanostructures. The performance of the hybrid solar cells was analyzed for four density levels of the TiO2 nanostructure. It was found that higher densities of TiO2 leads to more interface area and generates excitons, so that the power conversion efficiency increases to... 

    Visible light switchable bR/TiO2 nanostructured photoanodes for bio-inspired solar energy conversion

    , Article RSC Advances ; Volume 5, Issue 24 , Jan , 2015 , Pages 18642-18646 ; 20462069 (ISSN) Naseri, N ; Janfaza, S ; Irani, R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Today, regarding the limitation and environmental side effects of fossil fuel resources, solar hydrogen production is one of the main interests in the energy research area. The development of visible light sensitized semiconductors based on non-toxic components, low cost and available bio-species is an ongoing approach for H2 generation based on water splitting reactions. Here, two different morphologies of TiO2 photoanodes, nanoparticulated and nanotubular, have been modified with simply extracted bacteriorhodopsin (bR) without any linker. Achieving a significant enhancement in photoconversion efficiency of TiO2 photoanodes, η% was increased from 2.9 to 16.5 by bR addition to the TiO2... 

    Experimental investigation of a multi-effect active solar still: The effect of the number of stages

    , Article Applied Energy ; Volume 137 , 2015 , Pages 46-55 ; 03062619 (ISSN) Karimi Estahbanati, M. R ; Feilizadeh, M ; Jafarpur, K ; Feilizadeh, M ; Rahimpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this work, the effect of the number of stages on the productivity of a multi-effect active solar still was experimentally investigated for the first time. Moreover, system performances in continuous and non-continuous modes were compared. For this purpose, indoor experiments were conducted on 4 similar solar still devices with different stages (1-4 stages) in order to accurately control the environmental conditions. In addition, water production was hourly measured during the whole 24-h experiment. The results show that with increased number of stages, distillate production can be predicted with a quadratic function. Moreover, adding a maximum of 6 and 10 additional stages can... 

    A two-step spin-spray deposition processing route for production of halide perovskite solar cell

    , Article Thin Solid Films ; Volume 616 , 2016 , Pages 754-759 ; 00406090 (ISSN) Mohammadian, N ; Alizadeh, A. H ; Moshaii, A ; Gharibzadeh, S ; Alizadeh, A ; Mohammadpour, R ; Fathi, D ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    We report on fabrication of halide perovskite solar cells using a two-step spin-spray coating rout. The applied method is one of the most straight forward procedures for fabricating uniform stoichiometry and crystalline perovskite cells. To fabricate a high quality perovskite layer, various concentrations of methyl-ammonium iodide (CH3NH3I) were sprayed on a spin coated PbI2 layer using a simple airbrush gun. The characterization results indicate that the size of cuboid perovskite morphology depends on the concentration of methylammonium iodide in the spray procedure. The photovoltaic performance of the fabricated solar cells has been measured and a high dependency on the cuboid sizes was...