Loading...
Search for: solar-powered
0.005 seconds
Total 170 records

    Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes

    , Article Solar Energy ; Volume 184 , 2019 , Pages 115-126 ; 0038092X (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Although morphological disorder of nanotube structure is further down than the nanoparticular electrode, its density of traps are the hindering effects in the charge transport. In this study, crack-free TiO2 nanotube membranes, which obtained through a re-anodizing process, are fixed on transparent fluorine–tin-oxide glass by applying a few drops of Titanium Isopropoxide without needing the TiO2 powder paste. Front-side illuminated dye sensitized solar cells fabricated by undoped, N-doped and blue TiO2 nanotube membranes are investigated. The electrical characteristics of TiO2 nanotube based dye sensitized solar cells are followed by theoretical analysis using simple one-diode model.... 

    Experimental determination of natural convection heat transfer coefficient in a vertical flat-plate solar air heater

    , Article Solar Energy ; Volume 82, Issue 10 , 2008 , Pages 903-910 ; 0038092X (ISSN) Hatami, N ; Bahadorinejad, M ; Sharif University of Technology
    2008
    Abstract
    In this study, natural convection heat transfer in a vertical flat-plate solar air heater of 2.5 m height and 1 m width, with one- and two-glass covers was studied experimentally. Totally six cases of airflow (two for air heater with one glass cover and four for air heater with two-glass covers) were considered. These cases included states that air could flow within spaces between absorber plate and glass covers or air was enclosed in such spaces. Absorber plate temperature, back-plate temperature, glass cover temperatures, mass flow rates of air within channels and the solar radiation were measured. The following relations are suggested:. For channels in which air could flow:Nu = 0.7362... 

    A single layer deposition of Li-doped mesoporous TiO2beads for low-cost and efficient dye-sensitized solar cells

    , Article New Journal of Chemistry ; Volume 45, Issue 5 , 2021 , Pages 2470-2477 ; 11440546 (ISSN) Golvari, P ; Nouri, E ; Mohsenzadegan, N ; Mohammadi, M. R ; Martinez Chapa, S. O ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Herein, we report a new strategy for improving the efficiency and reducing the fabrication cost of dye-sensitized solar cells (DSCs) by elimination of the three- or four-fold layer deposition of TiO2. This is performed by replacing a single layer deposition of mesoporous TiO2 beads, with sub-micrometer size, high surface area and tunable pore size, synthesized by a combination of sol-gel and solvothermal methods. Furthermore, superior electronic properties gained by a reduction in electronic trap states are achieved through doping of pristine TiO2 beads with lithium. The beads have a spherical shape with monodispersed texture consisting of anatase-TiO2 nanocrystals and ultra-fine pores. The... 

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    , Article Energies ; Volume 14, Issue 24 , 2021 ; 19961073 (ISSN) Javed, H ; Muqeet, H. A ; Shehzad, M ; Jamil, M ; Khan, A. A ; Guerrero, J. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    An energy management system (EMS) was proposed for a campus microgrid (μG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a... 

    Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells

    , Article Solar Energy ; Volume 231 , 2022 , Pages 694-704 ; 0038092X (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    We introduce an effective method for copper indium sulfide selenide (CISSe) doping with different alkali metals (Li, Na and K) based on a pre-deposited alkali chloride layer. A simple and fast spray method is used for pre-deposition of alkali chloride layer (LiCl, NaCl, KCl) on substrate surface before spray pyrolysis deposition of copper indium disulfide CuInS2 (CIS) films followed by selenization. The different properties of alkali-doped CISSe films by the alkali chloride pre-deposition (ACPD) method were compared to the post-deposition treatment (PDT) method. Based on FESEM images, a highly compact film with large grains can be obtained for CISSe films doped with K(∼0.72 μm) and Na (∼0.56... 

    A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan

    , Article Energy ; Volume 240 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S.S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The use of hybrid renewable energy has increased in recent years due to the growing environmental concerns caused by the consumption of fossil fuels. The purpose of this study was the economic-environmental feasibility of using hybrid energy systems in one of the most polluted and populated provinces in Iran, Isfahan province. Various components of the hybrid energy system such as wind turbine (WT), photovoltaic panel (PV), diesel generator (DG), converter (CV) along with two scenarios of energy storage including battery (BT) and hydrogen storage have been considered in modeling the energy system. Six scenarios were considered based on the combination of different components for supplying... 

    Thermal residual stresses in silicon thin film solar cells under operational cyclic thermal loading: A finite element analysis

    , Article Solar Energy ; Volume 135 , 2016 , Pages 366-373 ; 0038092X (ISSN) Namvar, A ; Dehghany, M ; Sohrabpour, S ; Naghdabadi, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In manufacturing amorphous silicon solar cells, thin films are deposited at high temperatures (200-400 °C) on a thick substrate using sputtering and plasma enhanced chemical vapor deposition (PECVD) methods. Since the thin films and substrate have different thermal expansion coefficients, cooling the system from deposition temperature to room temperature induces thermal residual stresses in both the films and substrate. In addition, these stresses, especially those having been induced in the amorphous silicon layer can change the carrier mobility and band gap energy of the silicon and consequently affect the solar cell efficiency. In this paper, a 2D finite element model is proposed to... 

    Stable and efficient CuO based photocathode through oxygen-rich composition and Au-Pd nanostructure incorporation for solar-hydrogen production

    , Article ACS Applied Materials and Interfaces ; Volume 9, Issue 33 , 2017 , Pages 27596-27606 ; 19448244 (ISSN) Masudy Panah, S ; Siavash Moakhar, R ; Chua, C. S ; Kushwaha, A ; Dalapati, G. K ; Sharif University of Technology
    Abstract
    Enhancing stability against photocorrosion and improving photocurrent response are the main challenges toward the development of cupric oxide (CuO) based photocathodes for solar-driven hydrogen production. In this paper, stable and efficient CuO-photocathodes have been developed using in situ materials engineering and through gold-palladium (Au-Pd) nanoparticles deposition on the CuO surface. The CuO photocathode exhibits a photocurrent generation of ∼3 mA/cm2 at 0 V v/s RHE. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and X-ray spectroscopy (XPS) confirm the formation of oxygen-rich (O-rich) CuO film which demonstrates a highly stable photocathode with retained... 

    Optimal policy of energy innovation in developing countries: Development of solar PV in Iran

    , Article Energy Policy ; Volume 37, Issue 3 , 2009 , Pages 1116-1127 ; 03014215 (ISSN) Shafiei, E ; Saboohi, Y ; Ghofrani, M.B ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study is to apply managerial economics and methods of decision analysis to study the optimal pattern of innovation activities for development of new energy technologies in developing countries. For this purpose, a model of energy research and development (R&D) planning is developed and it is then linked to a bottom-up energy-systems model. The set of interlinked models provide a comprehensive analytical tool for assessment of energy technologies and innovation planning taking into account the specific conditions of developing countries. An energy-system model is used as a tool for the assessment and prioritization of new energy technologies. Based on the results of the... 

    Impact of innovation programs on development of energy system: case of Iranian electricity-supply system

    , Article Energy Policy ; Volume 37, Issue 6 , 2009 , Pages 2221-2230 ; 03014215 (ISSN) Shafiei, E ; Saboohi, Y ; Ghofrani, M. B ; Sharif University of Technology
    2009
    Abstract
    The paper presents further experiments with an extended version of a comprehensive model for assessment of energy technologies and research and development (R&D) planning to evaluate the impact of innovation programs on development of Iranian electricity-supply system. This analytical instrument is a model of energy R&D resource allocation with an explicit perspective of developing countries which has been linked to a bottom-up energy-systems model. Three emerging electricity generation technologies of solar PV, wind turbine and gas fuel cell are considered in the model and the impact of innovation programs on cost-reducing innovation for them is examined. The main results provided by the...