Loading...
Search for: solubility
0.006 seconds
Total 168 records

    Measurement and correlation of CO2 solubility in the systems of CO2 + toluene, CO2 + benzene, and CO2 + n-hexane at near-critical and supercritical conditions

    , Article Journal of Chemical and Engineering Data ; Volume 51, Issue 6 , 2006 , Pages 2197-2200 ; 00219568 (ISSN) Nemati Lay, E ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2006
    Abstract
    The solubility of CO2 in the systems of CO2 + benzene, CO2 + n-hexane, and CO2 + toluene was meticulously measured at (293.15, 298.15, and 308.15) K and different pressures using a pressure-volume-temperature (PVT) apparatus. Also the effect of pressure on the solubility of CO2 in the organic solvents used in this work was investigated. The Peng-Robinson equation of state (PR EOS) with only one temperature-independent binary interaction parameter was used in correlating the experimental data. The results showed that the PR EOS can accurately correlate the experimental data for the solubility of CO2 in the organic solvents at high pressure. In case of the systems CO2 + benzene and CO2 +... 

    Well Injectivity during CO2Geosequestration: A Review of Hydro-Physical, Chemical, and Geomechanical Effects

    , Article Energy and Fuels ; Volume 35, Issue 11 , 2021 , Pages 9240-9267 ; 08870624 (ISSN) Hajiabadi, S.H ; Bedrikovetsky, P ; Borazjani, S ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Deep saline aquifers are among the most favorable geological sites for short- and long-term carbon geosequestration. Injection of CO2 into aquifers causes various hydro-physical, chemical, and geomechanical interactions that affect the injectivity of wellbores. Despite the extensive research conducted on carbon capture and storage (CCS), there exists a lack of focus on the concept of injectivity. The present study aims to identify the gaps by reviewing the major factors contributing to CO2 injectivity in deep saline aquifers. Moreover, the existing analytical and numerical mathematical models to estimate maximum sustainable injection pressure and pressure build-up are critically reviewed.... 

    Theoretical study of diffusional release of a dispersed solute from a hollow cylindrical polymeric matrix

    , Article Scientia Iranica ; Volume 28, Issue 3 , 2021 , Pages 1428-1435 ; 10263098 (ISSN) Jooybar, E ; Tajsoleiman, T ; Abdekhodaie, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The present study proposes an exact solution for the release kinetic of a solute from inside a hollow cylindrical polymeric matrix into an infinite medium when the initial concentration of the solute (A) is greater than the solubility limit (Cs). A combination of analytical and numerical methods was used to calculate the solute concentration profile and the release rate. The model was developed for two different conditions including: (1) The release medium was flowing through the hollow cylinder in which the boundary layer may be neglected, and (2) The release medium inside the hollow cylinder was stagnant where the boundary layer needed to be considered. The results indicated that the... 

    Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes

    , Article Journal of Membrane Science ; Vol. 469, issue , 2014 , pp. 43-58 ; ISSN: 03767388 Rabiee, H ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Abstract
    The purpose of this study is to investigate separation performance of poly(ether-b-amide6) (Pebax1657)/glycerol triacetate (GTA) gel membranes for CO2 removal from H2, N2 and CH4. GTA as a low molecular weight and highly CO2-phill compound was added to membrane structure at various weight fractions, 20%, 40%, 60% and 80% of Pebax, to fabricate a new high solubility selective membrane with improved performance. Permeation of pure gases was studied at different temperatures from 25 to 65°C and pressures from 4 to 24bar and ideal selectivities were calculated. Results indicated enhancement in permeation for all tested gases. For example, at a pressure of 4bar and a temperature of 25°C, membrane... 

    Encapsulation of palladium nanoparticles by multiwall carbon nanotubes-graft-poly(citric acid) hybrid materials

    , Article Journal of Applied Polymer Science ; Volume 116, Issue 4 , 2010 , Pages 2188-2196 ; 00218995 (ISSN) Adeli, M ; Mehdipour, E ; Bavadi, M ; Sharif University of Technology
    2010
    Abstract
    Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNTCOOH) and MWCNT-graft-poly(citric acid) (MWCNTg-PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT-g-PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT-g-PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT-g-PCA hybrid materials (MWCNT-g-PCA-EPN) and their application as nanocatalyst toward... 

    Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media

    , Article Journal of Contaminant Hydrology ; Volume 228 , November , 2020 Khasi, S ; Ramezanzadeh, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Practical designs of non-aqueous phase liquids (NAPLs) remediation strategies require reliable modeling of interphase mass transfer to predict the retraction of NAPL during processes such as dissolution. In this work, the dissolution process of NAPL during two-phase flow in heterogeneous porous media is studied using pore-network modeling and micromodel experiments. A new physical-experimental approach is proposed to enhance the prediction of the dissolution process during modeling of interphase mass transfer. In this regard, the normalized average resident solute concentration is evaluated for describing the dissolution process at pore-level. To incorporate the effect of medium... 

    Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: Fluorescence and circular dichroism studies

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 71, Issue 4 , 2008 , Pages 1617-1622 ; 13861425 (ISSN) Gharagozlou, M ; Mohammadi Boghaei, D ; Sharif University of Technology
    2008
    Abstract
    Fluorescence spectroscopy in combination with circular dichroism (CD) spectroscopy were used to investigate the interaction of water-soluble amino acid Schiff base complexes, [Zn(L1,2)(phen)] where phen is 1,10-phenanthroline and H2L1,2 is amino acid Schiff base ligands, with bovine serum albumin (BSA) under the physiological conditions in phosphate buffer solution adjusted to pH 7.0. The quenching mechanism of fluorescence was suggested as static quenching according to the Stern-Volmer equation. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between amino acid Schiff base complexes and BSA. The thermodynamic parameters ΔG, ΔH... 

    Synthesis and properties of novel fluorinated polyamides based on noncoplanar sulfoxide containing aromatic bis(ether amine)

    , Article Polymer Journal ; Volume 41, Issue 3 , 2009 , Pages 174-180 ; 00323896 (ISSN) Shockravi, A ; Abouzari Lotf, E ; Javadi, A ; Taheri, S ; Sharif University of Technology
    2009
    Abstract
    A novel sulfoxide containing bis(ether amine) monomer, 2,2'-sulfoxide- bis[4-methyl(2-trifluoromethyl)4-aminophenoxy) phenyl ether] (M2), was synthesized from the halogen displacement of 2-chloro-5-nitrobenzotrifluoride with dibenzosulfoxide (DH) in the presence of potassium carbonate, followed by catalytic reduction of bis(ether nitro) intermediate with Zinc/Ammonium chloride. A series of organic-soluble poly(ether amide)s (PA1-7) bearing sulfoxide and electronwithdrawing trifiuoromethyl group were synthesized from bis(ether amine) with various aromatic diacids (1-7) via a direct polycondensation with triphenyl phosphite and pyridine. The resulting polymers had inherent viscosities ranging... 

    Charge transfer complexes of adenosine-5′-monophosphate and cytidine-5′-monophosphate with water-soluble cobalt(II) Schiff base complexes in aqueous solution

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 63, Issue 1 , 2006 , Pages 139-148 ; 13861425 (ISSN) Boghaei, D. M ; Gharagozlou, M ; Sharif University of Technology
    2006
    Abstract
    Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5′-monophosphate (AMP) and cytidine-5′-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na 2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato} cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4, 5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO 3-4-meosal-4,5-dmophen)] (3). The formation... 

    Experimental Study and Modelling of Ultrafine Particles Formation by Using the Supercritical Fluids

    , Ph.D. Dissertation Sharif University of Technology Karimi Sabet, Javad (Author) ; Gotbi, Cyrus (Supervisor) ; Khanchi, AliReza (Supervisor) ; Farhadpour, Farhad (Co-Advisor) ; Dorkoosh, Farid (Co-Advisor)
    Abstract
    In this research, we focused on demonstration of features and advantages of supercritical fluids technology to formation of fine particles (nano and micro scales) from bulk materials (solid) and synthesized metal oxides nanoparticles. Therefore, using two different fluids, carbon dioxide and water, and two completely different methods, the Rapid expansion of supercritical solution and supercritical hydrothermal, were used to produce fine particles of drug (acetaminophen) and nano metal oxide (zirconium dioxide and bismuth ferrite). The summary of this research are as follows:1. The solubility of acetaminophen in SuperCritical-Carbon Dioxide (SC-CO2) with and without menthol as a cosolvent... 

    Theoretical and Experimental Study of Essential oil Extraction from Damask Rose Flower

    , M.Sc. Thesis Sharif University of Technology Darvishi Noshabadi, Mohammad Amin (Author) ; Gothbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    The use of medicinal plants to improve living standards has coincided with the history of human life. Throughout history, man has had no choice but to resort to plants. Among all the plants, Iranians have had a deep connection with Mohammadi flowers and throughout history have tried to extract the plant in various ways. Therefore, in this article, we have examined the method of supercritical extraction. In order to create a criterion for comparing the maximum extraction rate with the Soxhlet method and with the help of normal hexane solvent, the extraction operation was performed and its efficiency was estimated to be equal to 1.02%. Then, with supercritical experiments, it was found that... 

    Recovery improvement using water and gas injection scenarios

    , Article Petroleum Science and Technology ; Vol. 29, issue. 3 , Sep , 2009 , p. 290-300 ; ISSN: 10916466 Tafty, M. F ; Masihi, M ; Momeni, A ; Sharif University of Technology
    Abstract
    Water and miscible gas injection scenarios are considered in an Iranian oil reservoir for the purpose of recovery improvement. Firstly reservoir fluid modeling and modeling of a slim tube test were performed. Then, water alternating gas (WAG) injection was evaluated by optimizing the WAG half cycle and WAG ratio. Alternatively, hybrid WAG and separate injection of water and gas in the top and bottom of the reservoir were also investigated. The numerical simulation results showed that the optimum WAG, with half cycle of 1.5 years and WAG ratio of one, gave the highest recovery factor. Moreover, economic evaluation of these scenarios indicated that WAG had the highest net present value and was... 

    Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material

    , Article Journal of Applied Polymer Science ; Vol. 131, issue. 20 , 2014 Kavoosi, G ; Nateghpoor, B ; Dadfar, S. M. M ; Dadfar, S. M. A ; Sharif University of Technology
    Abstract
    In this study, the properties of poly (vinyl alcohol)(PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure... 

    Investigation of mechanical properties, antibacterial features, and water vapor permeability of polyvinyl alcohol thin films reinforced by glutaraldehyde and multiwalled carbon nanotube

    , Article Polymer Composites ; Vol. 35,Issue. 9 , 2014 , pp. 1736-1743 ; ISSN: 1548-0569 Mohammad Mahdi Dadfar, S ; Kavoosi, G ; Mohammad Ali Dadfar, S ; Sharif University of Technology
    Abstract
    Polyvinyl alcohol (PVA) thin films were reinforced by glutaraldehyde and multiwalled carbon nanotubes (MWCNTs) and then mechanical, water solubility, water swelling, water uptake, water vapor permeability, and antibacterial properties of the films were examined. Cross-linking by glutaraldehyde or incorporation of MWCNT caused a significant increase in tensile strength, decrease in elongation at break, and increase in Young's modulus of the PVA films, while MWCNTs were more effective rather than that of glutaraldehyde. Cross-linking by glutaraldehyde or incorporation of MWCNT caused a significant decrease in water solubility, water swelling and water uptake, with a similar manner.... 

    Effect of empty bed residence time on biotrickling filter performance: Case study-triethylamine

    , Article International Journal of Environmental Science and Technology ; Vol. 11, issue. 1 , 2014 , pp. 183-190 ; ISSN: 17351472 Mirmohammadi, M ; Bayat, R ; Keshavarzi Shirazi, H ; Sotoudeheian, S ; Sharif University of Technology
    Abstract
    In this study, a laboratory-scale biotrickling filter (BTF) is used to remove Triethylamine (TEA) from gaseous wastes. The BTF is made of stainless steel with a height of 210 cm and an internal diameter of 21 cm packed with lava rocks. TEA elimination pattern was evaluated by changing empty bed residence times (EBRTs). The maximum elimination capacity (EC) has been determined to be 87 g/m3/h. At all EBRTs 52, 31, 20, and 10 s, contaminant transferring from gas phase to liquid was more than the EC. Also, the removal efficiency was 100 % for a mass loading of 100 g/m3/h. While the liquid recirculation velocity of 3.466 m3/m2/h was maintained, the flow rate was adjusted to 60, 100, 156, and 312... 

    Simulation of blood oxygenation in capillary membrane oxygenators using modified sulfite solution

    , Article Biophysical Chemistry ; Vol. 195, issue , Dec , 2014 , p. 8-15 Tabesh, H ; Amoabediny, G ; Rasouli, A ; Ramedani, A ; Poorkhalil, A ; Kashefi, A ; Mottaghy, K ; Sharif University of Technology
    Abstract
    Blood oxygenation is the main performance characteristic of capillary membrane oxygenators (CMOs). Handling of natural blood in in vitro investigations of CMOs is quite complex and time-consuming. Since the conventional blood analog fluids (e.g. water/glycerol) lack a substance with an affinity to capture oxygen comparable to hemoglobin's affinity, in this study a novel approach using modified sulfite solution is proposed to address this challenge. The solution comprises sodium sulfite as a component, simulating the role of hemoglobin in blood oxygenation. This approach is validated by OTR (oxygen transfer rate) measured using native porcine blood, in two types of commercially available... 

    Disc size markedly influences concentration profiles of intravenously administered solutes in the intervertebral disc: A computational study on glucosamine as a model solute

    , Article European Spine Journal ; Vol. 23, issue. 4 , April , 2014 , p. 715-723 Motaghinasab, S ; Shirazi-Adl, A ; Parnianpour, M ; Urban, J. P. G ; Sharif University of Technology
    Abstract
    Purpose: Tests on animals of different species with large differences in intervertebral disc size are commonly used to investigate the therapeutic efficacy of intravenously injected solutes in the disc. We hypothesize that disc size markedly affects outcome. Methods: Here, using a small non-metabolized molecule, glucosamine (GL) as a model solute, we calculate the influence of disc size on transport of GL into rat, rabbit, dog and human discs for 10 h post intravenous-injection. We used transient finite element models and considered an identical GL supply for all animals. Results: Huge effects of disc size on GL concentration profiles were found. Post-injection GL concentration in the rat... 

    Modified Gadonanotubes as a promising novel MRI contrasting agent

    , Article DARU, Journal of Pharmaceutical Sciences ; Volume 21, Issue 1 , 2013 ; 15608115 (ISSN) Jahanbakhsh, R ; Atyabi, F ; Shanehsazzadeh, S ; Sobhani, Z ; Adeli, M ; Dinarvand, R ; Sharif University of Technology
    2013
    Abstract
    Background and purpose of the study. Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn 3+) clusters. Methods. In this study equated Gdn 3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into the MWCNTs was quantified by inductively coupled plasma (ICP) method. To improve water solubility and biocompatibility of the system, the complexes were functionalized using diamine-terminated... 

    Coupled optimization of enhanced gas recovery and carbon dioxide sequestration in natural gas reservoirs: Case study in a real gas field in the south of Iran

    , Article International Journal of Greenhouse Gas Control ; Volume 17 , 2013 , Pages 515-522 ; 17505836 (ISSN) Zangeneh, H ; Jamshidi, S ; Soltanieh, M ; Sharif University of Technology
    2013
    Abstract
    Since the beginning of industrial age the atmospheric concentration of greenhouse gases has been increased significantly due to excessive use of fossil fuels. An effective way for decreasing emission of greenhouse gases is injection of CO2 in geological formations. Moreover, from the reservoir engineering point of view, CO2 injection has been considered as a method of enhancing oil and gas recovery. While using CO2 for enhanced oil recovery (EOR) has been the subject of several studies in the past decades, enhanced gas recovery (EGR) has not been fully studied in the gas reservoirs, mainly because of high recovery factor of gas reservoirs and mixing of the reservoir gas and CO2. In this... 

    Thin liquid film flow over substrates with two topographical features

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 2 , 2013 ; 15393755 (ISSN) Mazloomi, A ; Moosavi, A ; Sharif University of Technology
    2013
    Abstract
    A multicomponent lattice Boltzmann scheme is used to investigate the surface coating of substrates with two topographical features by a gravity-driven thin liquid film. The considered topographies are U- and V-shaped grooves and mounds. For the case of substrates with two grooves, our results indicate that for each of the grooves there is a critical width such that if the groove width is larger than the critical width, the groove can be coated successfully. The critical width of each groove depends on the capillary number, the contact angle, the geometry, and the depth of that groove. The second groove critical width depends on, in addition, the geometry and the depth of the first groove;...