Loading...
Search for: storage-systems
0.01 seconds
Total 147 records

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 754-763 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Multi-objective optimization of acetone droplet impingement on phase change material in direct-contact discharge method

    , Article Journal of Energy Storage ; Volume 46 , 2022 ; 2352152X (ISSN) Faghiri, S ; Aria, H. P ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Improving the discharge process of phase change materials (PCMs) is of great importance and can be effective for thermal energy storage (TES) systems. In this research, the direct-contact method for acetone droplet on molten paraffin is optimized to enhance the efficiency of the discharge process of PCMs and TES systems working with intermediate boiling fluid (IBF). In order to improve the storage rate and increase the freezing rate in the system, the NSGA-II algorithm is used. When the acetone droplet hits, owing to its low boiling point relative to the temperature of molten paraffin, the acetone evaporates, causing the creation of solidified paraffin area. The main goal of the current... 

    A novel management scheme to reduce emission produced by power plants and plug-in hybrid electric vehicles in a smart microgrid

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 5 , 2020 , Pages 2529-2544 Ashrafi, R ; Soleymani, S ; Mehdi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Recently, with the growth and development of distributed generation (DGs) and energy storage systems (ESSs), as well as smart control equipment, microgrids (MGs) have been developed. Microgrids are comprised of a limited number of constitutive parts, including loads, DGs, ESSs, and electric vehicles (EVs). This paper presents a novel scheme to manage active and reactive powers, based on DGs, ESSs, and EVs to reduce the total operation cost including power generation and emission costs. Simultaneous management of active and reactive power makes it possible to consider grid operation constraints together. In the proposed schedule, the vehicles are assumed to be plug-in hybrid electric... 

    Biomass-derived wearable energy storage systems based on poplar tree-cotton fibers coupled with binary nickel-cobalt nanostructures

    , Article Sustainable Energy and Fuels ; Volume 4, Issue 2 , 2020 , Pages 643-654 Hekmat, F ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We hereby demonstrate symmetric and asymmetric supercapacitors (SSCs and ASCs) based on core/shell-like Ni-Co oxide@cotton//Fe2O3-carbon nanotubes@cotton that are capable of storing a remarkable amount of energy, while retaining a high power density and long cycle life. Hierarchical, porous structures of Ni-Co-O nano-rod (NR) decorated Pd-activated cotton fibers (CFs) were fabricated using an eco-benign hydrothermal method and directly used as the cathode of the supercapacitors. Fe2O3-single-wall carbon nanotube (SWCNT) decorated CFs were employed as anodes of the fabricated ASCs. The assembled Ni-Co-O@cotton//Fe2O3-SWCNTs@cotton based ASCs possessed the benefits of a relatively high energy... 

    Energy, exergy, and economic analyses of an innovative energy storage system; liquid air energy storage (LAES) combined with high-temperature thermal energy storage (HTES)

    , Article Energy Conversion and Management ; Volume 226 , 15 December , 2020 Nabat, M. H ; Zeynalian, M ; Razmi, A. R ; Arabkoohsar, A ; Soltani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Liquid air energy storage is one of the most recent technologies introduced for grid-scale energy storage. As the title implies, this technology offers energy storage through an air liquefaction process. High energy storage density, no geographical limitation, and applicability for large-scale uses are some of the advantages of this technology. To improve the performance and environmental friendliness of the conventional design of this technology, a novel liquid air energy system combined with high-temperature thermal energy storage, thermoelectric generator, and organic Rankine cycle is proposed in the present article. The thermal energy storage unit removes the need for the conventional... 

    Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines

    , Article Renewable Energy ; Volume 153 , 2020 , Pages 1355-1367 Shaterabadi, M ; Jirdehi, M. A ; Amiri, N ; Omidi, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A multi-objective energy management strategy for a plus-zero energy building during a year, incorporating renewable resources, air to water heat pump, micro-CHP, ventilation, energy storage systems and thermal-cooling-electrical loads have been proposed in this paper. In this strategy, a novel technology of wind turbine that has been known as INVELOX has been investigated and collaborated in ZEB planning to reach efficient plus-ZEB at lower cost and pollution. As well the building can sell and buy power to/from the upstream network. The total cost and pollution of the building have been considered as objective functions. Also, the effect of objective function priority on the planning of the... 

    Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant

    , Article Solar Energy ; Volume 153 , 2017 , Pages 153-172 ; 0038092X (ISSN) Mostafavi Tehrani, S. S ; Taylor, R. A ; Nithyanandam, K ; Shafiei Ghazani, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study conducts a comprehensive comparative techno-economic analysis of some near-term sensible thermal energy storage (TES) alternatives to the ‘standard’ two-tank molten salt system for concentrated solar power (CSP) plants. As such, we conducted detailed, relative annual transient simulations for single-medium thermocline (SMT), dual-media thermocline (DMT), and shell-and-tube (ST) systems. To be consistent with recent literature, the DMT and ST systems use concrete with a porosity of 0.2 (e.g. where concrete occupies 80% of the system) as their low cost filler material. The systems were integrated into a validated 19.9 MWe Gemasolar CSP model, which has a solar multiple of...