Loading...
Search for: strain-rate
0.013 seconds
Total 200 records

    Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH)

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2275-2296 Bagheri, B ; Abbasi, M ; Abdolahzadeh, A ; Kokabi, A. H ; Sharif University of Technology
    Springer  2020
    Abstract
    This current work considers the utilization of the completely Lagrangian technique, smoothed particle hydrodynamics to improve the 3D finite element model for numerical analysis of the friction stir welding (FSW) in the air and underwater conditions. This technique was primarily applied to simulate fluid motion because of various advantages compared to conventionally grid-based methods. Newly, its usage has been developed to analyze the metal-forming analysis. The temperature history, strain and stress distributions during the FSW process in the air, as well as underwater, were considered. Besides the cooling influence, the effect of traveling speed, friction coefficient, mesh size and the... 

    A three-dimensional statistical volume element for histology informed micromechanical modeling of brain white matter

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 4 , 2020 , Pages 1337-1353 Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Springer  2020
    Abstract
    This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A... 

    Influence of joint arrangement on the fracture behavior of lead-free solder joints

    , Article Journal of Electronic Materials ; Volume 50, Issue 4 , 2021 , Pages 2117-2128 ; 03615235 (ISSN) Mirmehdi, S ; Nourani, A ; Honarmand, M ; Assempour, A ; Sharif University of Technology
    Springer  2021
    Abstract
    The capability to standardize the fracture strength of solder joints is an effective tool to investigate the reliability of electronic devices. To achieve this purpose, in this research, the influences of joint arrangement (loading arm and load sharing) on the level of constraint imposed on joint deformation, fracture energy, and generally, fracture behavior of solder joints were investigated. Fracture behavior of solder joints using double-cantilever-beam (DCB) specimens as a function of loading arm and load sharing (i.e., the distance between two solder joints) was studied under mode I loading conditions at a strain rate of 0.03 s−1. By increasing the loading arm, the fracture force, Fci,... 

    Deformation and creep characteristics of AA7075-T76 at elevated temperatures

    , Article Journal of Materials Engineering and Performance ; Volume 31, Issue 9 , 2022 , Pages 7586-7595 ; 10599495 (ISSN) Safarloo, S ; Serajzadeh, S ; Sharif University of Technology
    Springer  2022
    Abstract
    In this work, deformation behavior as well as creep and cavitation of AA7075-T76 were studied. The as-received plate was first stabilized utilizing solution treatment followed by two-stage artificial aging at 120 and 180 °C. Then, tensile tests were carried out on the aged-alloy in the temperature range between 120 and 250 °C under strain rates of 0.0005 and 0.005 s−1. Furthermore, stress-controlled creep tests were performed at temperatures varying between 120 and 210 °C at stresses ranging from 130 to 250 MPa. Microstructural evolution was then conducted to assess the microstructural changes and growth of cavities during creep employing optical metallography and scanning electron... 

    Evaluation of the effect of anisotropic consolidation and principle stress rotation on undrained behavior of silty sands

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1637-1653 ; 10263098 (ISSN) Keyhani, R ; Haeri, S. M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    The dependence of undrained behavior of silty sand on initial state of stress and direction of principal stresses with respect to vertical (ff) is assessed under generalized loading paths using hollow cylinder apparatus. During applying shear load, value of intermediate principal stress parameter (b) is held constant and ff value is increased from zero to the aimed value and held constant. Specimens are consolidated, both, isotropically and anisotropically to evaluate the effect anisotropic consolidation on the behavior of these soils. The wet tamping method was selected to prepare specimen. Shear loading was carried out under strain-controlled condition to capture post-peak strain-softening... 

    A novel procedure for micromechanical characterization of white matter constituents at various strain rates

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 784-794 ; 10263098 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Optimal hyperplastic coeficients of the micromechanical constituents of the human brain stem were investigated. An evolutionary optimization algorithm was combined with a Finite Element (FE) model of a Representative Volume Element (RVE) to nd the optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and compression test results of a previously published experiment were used for optimizing the material coeficients, and the shear experiment was used for the validation of the resulting constitutive model. The optimization algorithm was used to search for optimal shear moduli and ber sti ness of axon and ECM by tting the average stress in the axonal direction with the... 

    Study of synergistic toughening in a bimodal epoxy nanocomposite

    , Article Journal of Reinforced Plastics and Composites ; Volume 34, Issue 4 , February , 2015 , Pages 281-292 ; 07316844 (ISSN) Keivani, M ; Khamesinia, A ; Bagheri, R ; Kouchakzadeh, M. A ; Abadyan, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    Toughening of epoxy with different types of modifiers produces a bimodal blend that might show better fracture resistance in comparison with single-modified ones. In this research, bimodal epoxy formulations including mixtures of glass microsphere and silica nanoparticles are explored for possible synergistic toughening. The influence of composition on the glass transition temperature (Tg), tensile characteristics, and fracture toughness (KIC) is investigated. Interestingly, a synergism in fracture toughness is observed when mixtures of modifiers were incorporated. For the fixed overall modifier content, KIC is higher when the volume fraction of glass microsphere is lesser than the volume... 

    Constitutive modeling of elastic-visco-plastic behaviors in aluminum alloys subjected to cyclic loadings at various strain rates

    , Article Journal of Strain Analysis for Engineering Design ; Volume 50, Issue 2 , December , 2015 , Pages 103-124 ; 03093247 (ISSN) Felfeli, M ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this article, simulations of the stress-strain behavior in aluminum alloys were investigated under cyclic loadings at various strain rates. Four plasticity approaches were applied to simulate cyclic behaviors. To validate obtained results, strain-controlled tensile-compressive fatigue tests were performed in the low cycle fatigue regime. Isothermal fatigue experiments were conducted at various strain rates. Thermo-mechanical fatigue experiments were carried out at different rates of cooling and heating processes. Numerical results demonstrated a good agreement with experimental data at the mid-life cycle of the material. Material constants for different models were also presented for... 

    Biomechanical simulation of eye-airbag impacts during vehicle accidents

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 232, Issue 7 , 2018 , Pages 699-707 ; 09544119 (ISSN) Shirzadi, H ; Zohoor, H ; Naserkhaki, S ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Airbags are safety devices in vehicles effectively suppressing passengers’ injuries during accidents. Although there are still many cases of eye injuries reported due to eye-airbag impacts in recent years. Biomechanical approaches are now feasible and can considerably help experts to investigate the issue without ethical concerns. The eye-airbag impact–induced stresses/strains in various components of the eye were found to investigate the risk of injury in different conditions (impact velocity and airbag pressure). Three-dimensional geometry of the eyeball, fat and bony socket as well as the airbag were developed and meshed to develop a finite element model. Nonlinear material properties of... 

    Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

    , Article Journal of Intelligent Material Systems and Structures ; 2020 Sayyaadi, H ; Mehrabi, M ; Hoviattalab, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at... 

    Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

    , Article Journal of Intelligent Material Systems and Structures ; Volume 32, Issue 5 , 2021 , Pages 568-583 ; 1045389X (ISSN) Sayyaadi, H ; Mehrabi, M ; Hoviattalab, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at... 

    A novel phenomenological constitutive model for Ti-6Al-4V at high temperature conditions and quasi-static strain rates

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 235, Issue 13 , 2021 , Pages 1831-1842 ; 09544100 (ISSN) Ashrafian, M. M ; Hosseini Kordkheili, A ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Phenomenological constitutive modeling of Ti-6Al-4V at temperatures between 923 and 1023 K under 0.0005–0.05 s−1 quasi-static rates is studied based on a phenomenological approach. For this purpose, the Johnson–Cook constitutive model is revisited. At low temperature conditions under moderate to high strain rates, the material’s stress–strain curves are the most similar to power-law function. Contrary to this, at high temperature conditions under low to moderate strain rates, the saturation-type function well describes the stress–strain curves. On the other hand, it is illustrated that the Johnson–Cook constitutive model is feeble to predict the material’s behavior correctly. Accordingly, in... 

    A critical assessment of forming limit prediction models and beneficial modifications to them

    , Article SAE Technical Papers ; 2012 Ghazanfari, A ; Assempour, A ; Sharif University of Technology
    SAE  2012
    Abstract
    Major forming limit prediction models and calibration methods are reviewed briefly and their advantages and disadvantages are discussed. Two modified Marciniak-Kuczynski (M-K) models and one modified NADDRG (Keeler-Brazier) model are also presented which have some advantages over conventional models. In the first modified M-K model, material non-homogeneity has been substituted for geometrical non-homogeneity to reduce the sensitivity of the traditional model to variations of the initial non-homogeneity. Using this important advantage, a semi-empirical relation is proposed to predict the value of the initial material non-homogeneity. In the second modified M-K model, the conventional... 

    Hot workability of cast and wrought Ni–42Cu alloy through hot tensile and compression tests

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 26, Issue 6 , 2016 , Pages 1589-1597 ; 10036326 (ISSN) Arjmand, M ; Abbasi, S. M ; Karimi Taheri, A ; Momeni, A ; Sharif University of Technology
    Nonferrous Metals Society of China 
    Abstract
    In order to analyze the flow behavior and workability of Ni–42Cu in cast and wrought conditions, hot deformation tests were performed at temperatures and strain rates within the ranges of 900–1150 °C and 0.001–1 s−1, respectively. Tensile tests showed a “hot ductility trough” at 950 °C for both alloys. The drop in hot ductility was more considerable in the cast alloy because of the sluggish dynamic recrystallization. The hot ductility drop and grain boundary cracking, particularly in the cast alloy, were attributed to the segregation of detrimental atoms to the boundaries. It was shown that the hot ductility of the wrought alloy could be improved with increasing strain rate. It was... 

    Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 36, Issue 4 , 2005 , Pages 895-905 ; 10735623 (ISSN) Monajati, H ; Jahazi, M ; Yue, S ; Taheri, A. K ; Sharif University of Technology
    Minerals, Metals and Materials Society  2005
    Abstract
    The hot deformation behavior of nickel-base superalloy UDIMET 720 in solution-treated conditions, simulating the forging process of the alloy, was studied using hot compression experiments. Specimens were deformed in the temperature range of 1000 °C to 1175 °C with strain rates of 10-3 to 1 s-1 and total strain of 0.8. Below 1100 °C, all specimens showed flow localization as shear band through the diagonal direction, with more severity at higher strain rates. A uniform deformation was observed when testing between 1100 °C and 1150 °C with dynamic recrystallization as the major flow softening mechanism above 1125 °C. Deformation above γ' solvus temperature was accompanied with grain boundary... 

    Role of grain size and oxide dispersion nanoparticles on the hot deformation behavior of AA6063: experimental and artificial neural network modeling investigations

    , Article Metals and Materials International ; Volume 27, Issue 12 , 2021 , Pages 5212-5227 ; 15989623 (ISSN) Asgharzadeh, A ; Asgharzadeh, H ; Simchi, A ; Sharif University of Technology
    Korean Institute of Metals and Materials  2021
    Abstract
    Abstract: The hot deformation behavior of coarse-grained (CG), ultrafine-grained (UFG), and oxide dispersion-strengthened (ODS) AA6063 is experimentally recognized though carrying out compression tests at different temperatures (300–450 °C) and strain rates (0.01–1 s−1). Microstructural studies conducted by TEM and EBSD indicate that dynamic softening mechanisms including dynamic recovery and dynamic recrystallization become operative in all the investigated materials depending on the regime of deformation. Moreover, the high temperature flow behavior is considerably influenced by the initial grain structure and the presence of reinforcement particles. The constitutive and artificial neural... 

    Effect of strain rate on tensile properties of sheep disc anulus fibrosus

    , Article Technology and Health Care ; Volume 12, Issue 4 , 2004 , Pages 333-342 ; 09287329 (ISSN) Kasra, M ; Parnianpour, M ; Shirazi Adl, A ; Wang, J. L ; Grynpas, M. D ; Sharif University of Technology
    IOS Press  2004
    Abstract
    We investigated the effect of loading rate on tensile properties of sheep bone-anulus-bone specimens in axial direction. Disc anulus Samples with adjacent bone attachments were prepared from lateral, posterior and anterior regions of sheep lumbar spinal segments. The specimens were then tested at different strain rates under non-destructive cyclic tensile loading followed by destructive tensile loading. Each specimen was prepared by embedding the bony parts in the polymethylmetacrylate (PMMA) exposing the anulus portion to support tension. The results of non-destructive cyclic tests indicated a decrease in the hysteresis energy loss as strain rate increased. In the destructive tests, no... 

    Geometry influence on fracture behavior of lap-shear solder joints

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; Volume 12, Issue 1 , 2022 , Pages 80-88 ; 21563950 (ISSN) Karimi, M ; Nourani, A ; Honarvar, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Single lap-shear (SLS) specimens of 63Sn37Pb solder joints were prepared with three different adherend thicknesses at three varying joint lengths. The fracture force was measured at a shear strain rate of 0.01 s-1 for different geometries. The elastic-plastic fracture mechanics (EPFM) theory was used to find the energy dissipated in each case using a finite element model (FEM), and the fracture energy was obtained by cohesive zone modeling (CZM). Both 2-D and 3-D models were used to explain the variations in fracture energy by the level of constraint on the joint. Also, the plastic zone area and stress distribution along the solder layer were calculated at the moment of fracture. A phase... 

    Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials

    , Article Mechanics of Time-Dependent Materials ; Volume 26, Issue 4 , 2022 , Pages 871-890 ; 13852000 (ISSN) Mirparizi, M ; Razavinasab, S. M ; Sharif University of Technology
    Institute for Ionics  2022
    Abstract
    This article presents a modified Green–Lindsay (MG-L) thermoelasticity model considering temperature and strain rate. Previously, this model has been developed based on the Green–Lindsay theory of thermoelasticity using strain and temperature rate dependent thermoelastic equations. This study analyzes stress and thermal wave propagation of a functionally graded medium exposed to an electromagnetic field and a thermal shock. All magnetic, elastic, and thermal features of the medium are considered to vary in the longitudinal direction. Additionally, the properties of the material are dependent on the temperature in the form of a cubic function. Using the large displacement formulation and the... 

    Mechanical behaviour of A-III steel rebars under monotonic loadings at seismic strain rates

    , Article Magazine of Concrete Research ; Volume 70, Issue 1 , 2018 , Pages 42-54 ; 00249831 (ISSN) Khonsari, S. V ; Shabani, A ; England, G. L ; Shahsavar Gargari, M ; Sharif University of Technology
    ICE Publishing  2018
    Abstract
    As the reinforcing bars used in concrete structures located in earthquake-prone areas experience strain rates higher than normal quasi-static ones, it is necessary to have a comprehensive understanding of the behaviour of such materials under these rates of loading. In this work, in order to study the behaviour of grade A-III reinforcing-bar steel (based on the GOST standard, a set of technical standards maintained by the Euro-Asian Council for Standardization, Metrology and Certification), a number of monotonic tests on its tensile and compressive strength on (short and long) specimens at various strain rates, 0·002, 0·01, 0·02 and 0·04 s-1, experienced during earthquakes, were carried out....