Loading...
Search for: strain-rate
0.007 seconds
Total 200 records

    Investigating the Effect Strain Rate on the Poisson’s Ratio of Auxetic Polyurethane Foams

    , M.Sc. Thesis Sharif University of Technology Behbahani, Ali (Author) ; Nourani, Amir (Supervisor)
    Abstract
    Auxetic materials have a negative Poisson ratio (NPR), which is their most distinguishable characteristic as compared to regular materials. Test specimens were made of conventional polyurethane (PU) foams according to ASTM ; then, with a thermo-mechanical process, the foam was converted to auxetic PU foam. The reproducibility of specimens' fabrication was checked with CoV= for the final foam thickness. With regard to the fact that changing loading conditions can vary Poisson's ratio, in this study, the variations occurred in Poisson's ratio due to changing loading conditions are investigated. The applied strain and strain rate were altered in experiments and statistical analysis was... 

    Prediction of dynamic recrystallization kinetics during hot rolling

    , Article Modelling and Simulation in Materials Science and Engineering ; Volume 12, Issue 6 , 2004 , Pages 1185-1200 ; 09650393 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2004
    Abstract
    In this study, the kinetics of dynamic recrystallization is predicted under hot rolling conditions employing a first-order rate equation. The proposed model considers the effects of temperature and strain rate variations on recrystallization kinetics by simultaneously modelling heat transfer and plastic deformation phenomena. To do so, a two-dimensional finite element method is coupled with the transformation equation to calculate the temperature distribution and the strain rate field as well as the kinetics of dynamic recrystallization within the metal, concurrently, The model developed was examined for a low carbon steel. A series of hot compression tests were carried out at different... 

    Effect of strain rate on tensile properties of sheep disc anulus fibrosus

    , Article Technology and Health Care ; Volume 12, Issue 4 , 2004 , Pages 333-342 ; 09287329 (ISSN) Kasra, M ; Parnianpour, M ; Shirazi Adl, A ; Wang, J. L ; Grynpas, M. D ; Sharif University of Technology
    IOS Press  2004
    Abstract
    We investigated the effect of loading rate on tensile properties of sheep bone-anulus-bone specimens in axial direction. Disc anulus Samples with adjacent bone attachments were prepared from lateral, posterior and anterior regions of sheep lumbar spinal segments. The specimens were then tested at different strain rates under non-destructive cyclic tensile loading followed by destructive tensile loading. Each specimen was prepared by embedding the bony parts in the polymethylmetacrylate (PMMA) exposing the anulus portion to support tension. The results of non-destructive cyclic tests indicated a decrease in the hysteresis energy loss as strain rate increased. In the destructive tests, no... 

    Modelling the flow behaviour of steel under non-isothermal conditions

    , Article Materials Science and Technology ; Volume 19, Issue 8 , 2003 , Pages 1065-1069 ; 02670836 (ISSN) Serajzadeh, S ; Zebarjad, S. M ; Sharif University of Technology
    2003
    Abstract
    A mathematical model is proposed for evaluating flow behaviour under hot deformation conditions. The effects of dynamic recovery and recrystallisation as well as temperature and strain rate variations are considered in the model by means of Bergstrom's approach and the additivity rule for strain. To verify the model, hot compression tests for three grades of steel together with upsetting experiments are carried out. Comparison between experimental and theoretical results confirms the reliability of the model. © 2003 IoM Communications Ltd. Published by Maney for the Institute of Materials, Minerals and Mining  

    Chemomechanical Modeling of Silicon Electrode in Lithium-Ion Battery by Considering the Effects of Large Plastic Deformation and Strain Rate

    , Ph.D. Dissertation Sharif University of Technology Bagheri, Afsar (Author) ; Naghdabadi, Reza (Supervisor) ; Argavani Hadi, Jamal (Supervisor)
    Abstract
    In Li-ion batteries, large volume changes of electrodes with high capacity, such as silicon electrodes during charging and discharging processes (insertion/extraction of lithium into/from the electrode), lead to restrictions on the use of this type of electrode. Given the very high capacity of silicon, predicting and modeling the behavior of silicon electrodes during electrochemical cycles is important and is also addressed in this thesis. First, using the theory of linear elasticity, relations are proposed that couple the diffusion of particles with small elastic deformation. The effect of hydrostatic stress on diffusion and stresses is investigated in lithiation processes. Then, the... 

    Study of The Effect of Strain Rate on Cold Deformation Behavior and Mechanical Properties of 304L Austenitic Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Alireza (Author) ; Serajzadeh, Siamak (Supervisor) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The stiffness rate of the 300 series austenitic stainless steel has long been known to depend on the stability of the austenite and its susceptibility to martensite formation. In this project, the cold deformation of austenitic stainless steel (304L) and the occurrence of martensite deformation during it are studied. Experimental cold rolling experiments under different strain velocities and initial temperatures in the range of -10° C to 25° C; Performed and microstructure, mechanical properties and percentage of martensite generated in rolled steel are determined and evaluated employing different testing techniques. mathematical modeling of cold rolling operation is also performed using... 

    Investigation of Effective Microstructural Parameters on the Stress Whitening in Polypropylene Blends

    , Ph.D. Dissertation Sharif University of Technology Farmahini Farahani, Mohammad (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Stress whitening is a type of discoloration that can occur in variety of polymers used in automotive and household industries. The current research tries to investigate the effective microstructural parameters such as strain rate, rubber second phase, and branched polypropylene (PP) on the stress whitening in polypropylene in order to propose toughed PP blends with limited stress whitening. It is shown that increasing the strain rate in tensile test results in formation of more visible whitened area within the plastically deformed zone. This is the consequence of further growth of micro-voids at higher strain rates. The results are in accordance with the Mie scattering concepts. Besides, the... 

    Main and interaction effects of manufacturing variables on microstructure and fracture of solder-copper connections

    , Article Engineering Failure Analysis ; Volume 139 , 2022 ; 13506307 (ISSN) Mohammadiamiri, M ; Nourani, A ; Hossein Farrahi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Finding the optimized set of manufacturing parameters to produce strong solder-copper connections requires investigating the main and interaction effects of processing variables on the joint strength and microstructure. In this study, solder joint specimens were prepared at different levels of cooling rate, time above liquidus (TAL), and soldering temperature. Mode I fracture experiments were designed and performed at a strain rate of 0.5 s−1. The fracture load remained constant from the cooling rate of 0.1 to 1.4 °C/s and then decreased by almost 34% with further increase in the cooling rate to 34 °C/s. Increasing TAL from 60 to 120 s reduced the fracture load by almost 27%, while it was... 

    Deformation and creep characteristics of AA7075-T76 at elevated temperatures

    , Article Journal of Materials Engineering and Performance ; Volume 31, Issue 9 , 2022 , Pages 7586-7595 ; 10599495 (ISSN) Safarloo, S ; Serajzadeh, S ; Sharif University of Technology
    Springer  2022
    Abstract
    In this work, deformation behavior as well as creep and cavitation of AA7075-T76 were studied. The as-received plate was first stabilized utilizing solution treatment followed by two-stage artificial aging at 120 and 180 °C. Then, tensile tests were carried out on the aged-alloy in the temperature range between 120 and 250 °C under strain rates of 0.0005 and 0.005 s−1. Furthermore, stress-controlled creep tests were performed at temperatures varying between 120 and 210 °C at stresses ranging from 130 to 250 MPa. Microstructural evolution was then conducted to assess the microstructural changes and growth of cavities during creep employing optical metallography and scanning electron... 

    Obtaining strain-rate dependent traction-separation law parameters of epoxy adhesive joints and predicting fracture for dissimilar bonding adherends

    , Article International Journal of Adhesion and Adhesives ; Volume 118 , 2022 ; 01437496 (ISSN) Darvishi, I ; Nourani, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigated the mode I fracture behavior of double cantilever beam (DCB) epoxy adhesive joints with similar adherends on the both sides (i.e., aluminum-aluminum or copper-copper) at different strain rates; i.e., quasi-static (∼10−3 s−1), low (∼7 s−1) and intermediate (∼14 s−1) rates. The fracture energy of the DCB joint in Al-adhesive-Al specimens decreased (i.e., by ∼62%, p = 0.0013) with an increase in the applied strain rate from quasi-static to low values, while it remained almost unchanged with further increase of stain rate to intermediate range (p > 0.05). For Cu-adhesive-Cu cases, however, the fracture energy was found to be almost insensitive to the applied strain rate... 

    A new look at tensile yielding in isotactic polypropylene: role of strain rate and thermal softening

    , Article Polymer Bulletin ; Volume 79, Issue 12 , 2022 , Pages 11157-11176 ; 01700839 (ISSN) Farahani, M. F ; Bagheri, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Polypropylene (PP) is a semi-crystalline polymer with a very wide range of industrial applications. This is why its mechanical properties, including yielding, have been the subject of numerous studies. The current study has examined the influence of strain rate and thermal softening on yield stress and post yielding behavior of an isotactic PP. A two-process Ree and Eyring model and the heat equation in adiabatic deformation were coupled with a physical parameter described as the temperature sensitivity of the flow stress at yielding, to simulate the effect of gradual temperature rise in adiabatic heating on yielding behavior. Along with that, tensile bars were subjected to tests at... 

    Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials

    , Article Mechanics of Time-Dependent Materials ; Volume 26, Issue 4 , 2022 , Pages 871-890 ; 13852000 (ISSN) Mirparizi, M ; Razavinasab, S. M ; Sharif University of Technology
    Institute for Ionics  2022
    Abstract
    This article presents a modified Green–Lindsay (MG-L) thermoelasticity model considering temperature and strain rate. Previously, this model has been developed based on the Green–Lindsay theory of thermoelasticity using strain and temperature rate dependent thermoelastic equations. This study analyzes stress and thermal wave propagation of a functionally graded medium exposed to an electromagnetic field and a thermal shock. All magnetic, elastic, and thermal features of the medium are considered to vary in the longitudinal direction. Additionally, the properties of the material are dependent on the temperature in the form of a cubic function. Using the large displacement formulation and the... 

    Mechanical properties and γ/γ' interfacial misfit network evolution: A study towards the creep behavior of Ni-based single crystal superalloys

    , Article Mechanics of Materials ; Volume 171 , 2022 ; 01676636 (ISSN) Khoei, A. R ; Youzi, M ; Tolooei Eshlaghi, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The aim of this study is to investigate the role of the temperature, stress, and rhenium (Re) on the γ/γ' interfacial misfit dislocation network and mechanical response of Ni-based single crystal superalloys. After aging at elevated temperatures, mismatch between the two phases results in an interfacial dislocation network to relieve the coherency stress. Molecular dynamics (MD) simulations have been performed to study the properties of the (100), (110), and (111) phase interface crystallographic directions. Increasing temperature disperses the atomic potential energy at the interface diminishing the strength and stability of the networks. In the case of loading, when a constant strain rate... 

    The effect of carbon on the restoration phenomena during hot deformation of carbon steels

    , Article International Journal of Materials Research ; Volume 94, Issue 8 , 2022 , Pages 916-921 ; 18625282 (ISSN) Serajzadeh, S ; Karimi Taheri, A ; Zebarjad, S. M ; Sharif University of Technology
    Walter de Gruyter GmbH  2022
    Abstract
    A study has been made to determine the influence of the carbon content on the kinetics of dynamic and static recrystallization during and after hot deformation of carbon steels. For this purpose, single- and double-hit hot compression experiments at various strain rates and temperatures together with the Avrami-type kinetics equation and Bergstrom approach have been utilized to investigate recrystallization behavior. The results show that the apparent activation energy of hot deformation decreases with increasing carbon content and this phenomenon results in a faster dynamic recrystallization at high temperatures and/or low strain rates. Also, increasing carbon content leads to a higher rate... 

    Investigating the Fracture Behavior of Adhesive Joints at Different Strain Rates and under Drop

    , M.Sc. Thesis Sharif University of Technology Darvishi, Irana (Author) ; Nourani, Amir (Supervisor)
    Abstract
    Nowadays adhesives with the development of technology and the numerous benefits they have, are becoming a replacement for traditional joining methods in industries like electronics, automotive, aerospace, and naval. That’s why the need for studying the fracture behavior of adhesive joints becomes vital. So far, many engineers and designers are trying to investigate the behavior of adhesive joints in different conditions that these joints actually deal with. Also, finding solutions to predict the behavior of adhesive joints is the researchers’ other concern. The purpose of this research is to find the effect of factors that are less focused in the literature, on the fracture of adhesive... 

    Early post-operative performance of an anatomically designed hybrid thread interference screw for ACL reconstruction: A comparative study

    , Article Journal of Biomechanics ; Volume 135 , 2022 ; 00219290 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Javad Mortazavi, S. M ; Rouhi, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Although the anterior cruciate ligament (ACL) reconstruction using interference screw is a well-accepted surgical procedure, patients still suffer graft failure in the initial rehabilitation phase. Graft fixation stability of a newly designed anatomical hybrid thread tapered interference screw (AHTTIS) was compared with a conventional standard one (CSIS) by conducting in-vitro mechanical tests. According to the CSIS manufacturer's instruction, eight tapered bone tunnels, matching AHTTIS geometry, and eight straight cylindrical tunnels were drilled in artificial bone blocks. Bovine tendon grafts were fixed using AHTTIS and CSIS in their corresponding bone tunnels. Each graft was subjected to... 

    Modeling the dual-fuel combustion of porous lycopodium particles and diesel using an analytical simulation framework

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 163 , 2022 ; 01652370 (ISSN) Tashakori, S ; Akbari, S ; Faghiri, S ; Sadeghi, S ; Xu, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, a comprehensive analytical study is performed to assess the lycopodium-diesel dual-fuel combustion system in counter-flow premixed configuration. The system is modeled as multiple zones that are coupled together via proper boundary and jump conditions on interfaces. According to the respective reaction and transport phenomena in these zones, conservation equations of mass and energy are derived, non-dimensionalized, and solved by Matlab and Mathematica in an analytical way. The porosity of lycopodium particles and the thermal radiation from the reaction zone and the post-flame zones into the preheating zone are considered, in order to improve the realism and accuracy of the... 

    Assessment of optimal reaction progress variable characteristics for partially premixed flames

    , Article Combustion Theory and Modelling ; Volume 26, Issue 5 , 2022 , Pages 797-830 ; 13647830 (ISSN) Chitgarha, F ; Ommi, F ; Farshchi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The reaction progress variable is a crucial concept in the advanced flamelet combustion models. As a controlling variable, a well-defined progress variable must consider the essential features of the combustion process. It is usually a heuristically defined linear combination of some major chemical species mass fractions. However, such a simple definition could lead to inaccurate results for the fuel-rich reactive mixtures or complicated fuels, due to the vast number of chemical species in the combustion process. In this paper, a new method for generating a reaction progress variable is proposed through solving a constrained optimisation problem. The proposed method uses a genetic algorithm... 

    Geometry influence on fracture behavior of lap-shear solder joints

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; Volume 12, Issue 1 , 2022 , Pages 80-88 ; 21563950 (ISSN) Karimi, M ; Nourani, A ; Honarvar, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Single lap-shear (SLS) specimens of 63Sn37Pb solder joints were prepared with three different adherend thicknesses at three varying joint lengths. The fracture force was measured at a shear strain rate of 0.01 s-1 for different geometries. The elastic-plastic fracture mechanics (EPFM) theory was used to find the energy dissipated in each case using a finite element model (FEM), and the fracture energy was obtained by cohesive zone modeling (CZM). Both 2-D and 3-D models were used to explain the variations in fracture energy by the level of constraint on the joint. Also, the plastic zone area and stress distribution along the solder layer were calculated at the moment of fracture. A phase... 

    Effect of building direction on high strain-rate compressive behavior of heat-treated LPBF-maraging steels using Split Hopkinson pressure bar apparatus

    , Article Materials Science and Engineering A ; Volume 835 , 2022 ; 09215093 (ISSN) Dehgahi, S ; Pirgazi, H ; Sanjari, M ; Seraj, P ; Odeshi, A ; Kestens, L. A. I ; Mohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Rod-shaped samples of maraging steel were additively fabricated in vertical and horizontal directions using laser powder bed fusion technique. The samples were first aged at 490 °C for 6 h and then subjected to dynamic compressive tests using Split Hopkinson Pressure Bar apparatus. The dynamic compression tests were conducted on vertical samples at strain rates of 190, 460, 810, 1100, 1300 s−1. However, the high strain rate tests were performed at strain rates of 120, 615, 745, 890, 2200 s−1 on horizontal samples. After applying the compressive impact loads on the samples, it was found that although horizontally built samples exhibit higher dynamic strength, vertically built samples show...