Loading...
Search for: structural-optimization
0.008 seconds
Total 101 records

    Multi-objective optimal design of stiffened laminated composite cylindrical shell with piezoelectric actuators

    , Article International Journal on Interactive Design and Manufacturing ; Volume 14, Issue 2 , January , 2020 , Pages 595-611 Khodaygan, S ; Bohlooly, M ; Sharif University of Technology
    Springer  2020
    Abstract
    The stiffeners and piezoelectric actuators are used in many aerospace structures as an auxiliary layer with laminated composites. A question then arises as to whether we can estimate the percentage of these materials in an efficient design. Due to the high computational cost, it is not easy to answer through numerical solutions. The objective of this paper is concurrently to maximize the buckling load and minimize the weight of the cylindrical shell. To reach this aim, a multi-objective optimization problem is developed based on the closed-form solutions of thermal/mechanical buckling and weight of the piezolaminated shell with eccentric/concentric stiffener. The Non-dominated Sorting... 

    Value based seismic design of structures using performance assessment by the endurance time method

    , Article Structure and Infrastructure Engineering ; Volume 16, Issue 10 , January , 2020 , Pages 1397-1415 Mirfarhadi, S. A ; Estekanchi, H. E ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    A framework for optimal seismic design of structures, considering maximum value as the design objective, is introduced. In this framework, the value parameter incorporates a comprehensive set of performance indicators. Decision indicators are mapped into equivalent economic values and are directly involved in the design process. This approach leads to optimal assignment of the available resources to meet infrastructure requirements. The construction cost and the risk of seismic consequences are considered as the value components. FEMA-P58 methodology is utilized in estimation of the seismic consequences including the repair cost, repair time, injuries and casualties. Endurance Time method is... 

    Geometrical optimization for silver nanowire mesh as a flexible transparent conductive electrode

    , Article Applied Optics ; Volume 59, Issue 10 , 2020 , Pages 3073-3080 Nikzad, M. J ; Mahdavi, S. M ; Sadrnezhaad, S. K ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    We report the effect of the geometric parameters on transparency and conductivity in a metallic nanowire mesh as a transparent electrode. Today, indium tin oxide and fluorine-doped tin oxide are used as the transparent electrode for displays and solar cells. Still, there is a definite need for their replacement due to drawbacks such as brittleness, scarcity, and adverse environmental effects. Metallic nanowire mesh is likely the best replacement option, but the main issue is how to find the optimal structure and how to get the best performance. Since the interaction of light with nanowire mesh is complicated, there is no straightforward rule with a simple analytical solution. We developed a... 

    Optimum seismic design of steel framed-tube and tube-in-tube tall buildings

    , Article Structural Design of Tall and Special Buildings ; Volume 29, Issue 14 , 2020 Sarcheshmehpour, M ; Estekanchi, H. E ; Moosavian, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code-compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20-, 40-, and 60-story buildings with a framed tube as well as a tube-in-tube system. Such a design gives rise to a basis for the fair... 

    Optimum placement of supplementary viscous dampers for seismic rehabilitation of steel frames considering soil–structure interaction

    , Article Structural Design of Tall and Special Buildings ; Volume 29, Issue 1 , 2020 Sarcheshmehpour, M ; Estekanchi, H. E ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this paper, the significance of soil–structure interaction (SSI) in optimal placement of viscous dampers in steel frames is studied. Optimal placement of dampers is determined with the purpose of achieving performance objectives at three hazard levels using genetic algorithm optimization. Endurance time method is used for seismic nonlinear response analysis of the fixed-base and SSI included frames. The soil beneath the structures is considered as a homogeneous elastic half-space, and the soil–structure systems are modeled by the substructure method. Results indicate that at low excitation intensities, consideration of SSI results in maximum drift ratio reduction at all stories of the... 

    Optimized nanoporous alumina coating on AA3003-H14 aluminum alloy with enhanced tribo-corrosion performance in palm oil

    , Article Ceramics International ; Volume 46, Issue 6 , 2020 , Pages 7306-7323 Sarraf, M ; Nasiri Tabrizi, B ; Dabbagh, A ; Basirun, W. J ; Sukiman, N. L ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study aimed to prepare nanoporous anodic alumina on AA3003-H14 aluminum alloy using a mild anodization process with minimal working voltage and treatment time. The microstructural features, mechanical properties, and tribocorrosion behavior of the coatings were assessed to determine the optimum conditions for the fabrication of nanoporous anodic alumina on AA3003-H14 alloy. The microstructural analysis showed both uniform and nonuniform pore nucleations during anodization in H2SO4/C2H2O4, H2SO4/H2CrO4, and EG/H2O/NH4F electrolytes, where the optimal nanoporous structure with an average thickness, porosity, pore diameter, and interpore distance of 382 nm, 19%, 16 nm, and 35 nm,... 

    An approach to distribution system planning by implementing distributed generation in a deregulated electricity market

    , Article 2007 Large Engineering Systems Conference on Power Engineering, LESCOPE'07, Montreal, QC, 10 October 2007 through 12 October 2007 ; January , 2007 , Pages 90-95 ; 9781424415830 (ISBN) Porkar, S ; Abbaspour Tehranifard, A ; Saadate, S ; Sharif University of Technology
    2007
    Abstract
    Electric power deregulation has drastically affected the engineering aspects of planning. In addition need flexible electric systems, changing regulatory and economic scenarios, energy savings and environmental impact are providing impetus to the development of Distributed Generation (DG), which is predicted to play an increasing role in the electric power system of the future. This opens the venue for distribution company's (Disco) aiming to minimize their investment risks by developing optimum new planning strategies to meet the load growth and satisfy the system performance at minimum cost different electricity structures. This paper proposes a framework for solving the distribution... 

    On optimal proportions of structural member cross-sections to achieve best seismic performance using value based seismic design approach

    , Article Engineering Structures ; Volume 231 , 2021 ; 01410296 (ISSN) Mirfarhadi, S. A ; Estekanchi, H. E ; Sarcheshmehpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The value-based seismic design framework is a new design method that efficiently balances the construction resources and the seismic consequences, through reliable evaluation of the building performance at an affordable computational cost. This paper employs the value-based design approach to optimize the cross-section proportions of the steel wide-flange members. An optimization problem is proposed within the framework of value-based design. Construction cost and seismic consequences are selected as the value components. Moreover, the minimum code requirements are formulated as the design constraints. FEMA-P58 framework is exploited for the prediction of the seismic consequences including... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; 2021 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Multi-objective optimization of vehicle floor panel with a laminated structure based on V-shape development model and Taguchi-based grey relational analysis

    , Article Structural and Multidisciplinary Optimization ; Volume 65, Issue 3 , 2022 ; 1615147X (ISSN) Salmani, H ; Khalkhali, A ; Ahmadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this paper, the V-shape development model approach for designing an automotive floor panel made by laminated structure is investigated to attain the best trade-off between the system and subsystem level requirements while improving the local and global performance of the vehicle. For this purpose, the bending and torsional stiffness of the body structure, as well as mass, strength, and vibration attenuation of the floor panel, are considered as design objectives at the system and subsystem levels. A multi-objective discrete optimization of a laminated configuration is performed using the Taguchi-based grey relational analysis. Material grades and thicknesses of the sandwich panel face... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 3 , 2022 , Pages 1579-1588 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    An efficient performance-based seismic design method for reinforced concrete frames

    , Article Earthquake Engineering and Structural Dynamics ; Volume 41, Issue 4 , 2012 , Pages 663-679 ; 00988847 (ISSN) Hajirasouliha, I ; Asadi, P ; Pilakoutas, K ; Sharif University of Technology
    Abstract
    In this paper, a practical method is developed for performance-based design of RC structures subjected to seismic excitations. More efficient design is obtained by redistributing material from strong to weak parts of a structure until a state of uniform deformation or damage prevails. By applying the design algorithm on 5, 10 and 15-storey RC frames, the efficiency of the proposed method is initially demonstrated for specific synthetic and real seismic excitations. The results indicate that, for similar structural weight, designed structures experience up to 30% less global damage compared with code-based design frames. The method is then developed to consider multiple performance objectives... 

    The use of ladder particle swarm optimisation for quantitative structure-activity relationship analysis of human immunodeficiency virus-1 integrase inhibitors

    , Article Molecular Simulation ; Volume 37, Issue 15 , 2011 , Pages 1221-1233 ; 08927022 (ISSN) Jalali Heravi, M ; Ebrahimi-Najafabadi, H ; Sharif University of Technology
    2011
    Abstract
    This contribution focuses on the use of ladder particle swarm optimisation (LPSO) on modelling of oxadiazole- and triazolesubstituted naphthyridines as human immunodeficiency virus-1 integrase inhibitors. Artificial neural network (ANN) and Monte Carlo cross-validation techniques were combined with LPSO to develop a quantitative structure-activity relationship model. The techniques of LPSO, ANN and sample set partitioning based on joint x-y distances were applied as feature selection, mapping and model evaluation, respectively. The variables selected by LPSO were used as inputs of Bayesian regularisation ANN. The statistical parameters of correlation of deterministic, R2, and... 

    3D ternary Ni: XCo2- xP/C nanoflower/nanourchin arrays grown on HCNs: A highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction

    , Article Nanoscale ; Volume 12, Issue 30 , 2020 , Pages 16123-16135 Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Over the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts. Nevertheless, finding a straightforward and effective route to prepare efficient catalysts with unique structural features and optimal supports still is a big challenge. Among the various candidates, metal-organic framework (MOF)-derived materials show great advantages as new kinds of active non-precious catalysts. On the other hand, the controllable integration of MOFs and carbon-based nanomaterials leads to further... 

    Tuned mass damper for vibration control in steel jacket platforms

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 15 June 2008 through 20 June 2008, Berlin ; Volume 1 , 2008 , Pages 35-42 ; 9780791848234 (ISBN) Golafshani, A. A ; Gholizad, A ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    Considering the stress cycles in joints and members due to wave induced forces on offshore platforms, fatigue analysis is therefore one of the most important analyses in offshore platforms design. Most of steel jacket type platforms located in areas with relatively high ratios of operational sea-states to maximum design environmental events; fall in acceptable safety margin in inplace and seismic analyses. But in fatigue analyses they will face critical condition. Therefore it seems that utilizing control mechanisms with the aim of increasing fatigue life in such platforms will be more preferable to merely deck displacement control. Investigation of tuned mass dampers adjustable parameters... 

    Optimum code structures for positive optical CDMA using normalized divergence maximization criterion

    , Article IEEE Transactions on Communications ; Volume 56, Issue 9 , 2008 , Pages 1414-1421 ; 00906778 (ISSN) Mashhadi, S ; Salehi, J. A ; Sharif University of Technology
    2008
    Abstract
    In this letter we consider optimum code structure for positive optical code division multiple-access (optical CDMA) systems. Positive systems are a class of systems that operate with positive real numbers only. We consider the effect of multipleaccess interference in our model and show that code design for both On-Off Keying (OOK) and Binary PPM optical CDMA systems results in the same solutions. Furthermore, we show that a class of codes known as optical orthogonal codes (OOCs) are the best possible positive codes. In obtaining the results we define normalized divergence based on signal-to-multipleaccess interference ratio (SIR) for a multiple-access system in a useful manner and use it as... 

    Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1179-1196 ; 1738494X (ISSN) Sarrafan, A ; Zareh, S. H ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feedforward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse... 

    Optimal policy of energy innovation in developing countries: Development of solar PV in Iran

    , Article Energy Policy ; Volume 37, Issue 3 , 2009 , Pages 1116-1127 ; 03014215 (ISSN) Shafiei, E ; Saboohi, Y ; Ghofrani, M.B ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study is to apply managerial economics and methods of decision analysis to study the optimal pattern of innovation activities for development of new energy technologies in developing countries. For this purpose, a model of energy research and development (R&D) planning is developed and it is then linked to a bottom-up energy-systems model. The set of interlinked models provide a comprehensive analytical tool for assessment of energy technologies and innovation planning taking into account the specific conditions of developing countries. An energy-system model is used as a tool for the assessment and prioritization of new energy technologies. Based on the results of the... 

    Optimal riser design in sand casting process by topology optimization with SIMP method I: poisson approximation of nonlinear heat transfer equation

    , Article Structural and Multidisciplinary Optimization ; Volume 36, Issue 2 , 25 January , 2008 , Pages 193-202 ; 1615147X (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2008
    Abstract
    The optimal design of a casting feeding system is considered. The problem is formulated as the volume constrained topology optimization and is solved with the finite element analysis, explicit design sensitivity, and numerical optimization. In contrast to the traditional topology optimization where the objective function is defined on the design space, in the presented method, the design space is a subset of the complement of the objective function space. To accelerate optimization procedure, the nonlinear unsteady heat transfer equation is approximated with a Poisson-like equation. The feasibility of the presented method is supported with illustrative examples. © 2007 Springer-Verlag