Loading...
Search for: structural-optimization
0.011 seconds
Total 101 records

    Structural cost-optimal design of sensor networks for distributed estimation

    , Article IEEE Signal Processing Letters ; Volume 25, Issue 6 , June , 2018 , Pages 793-797 ; 10709908 (ISSN) Doostmohammadian, M ; Rabiee, H. R ; Khan, U. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this letter, we discuss cost optimization of sensor networks monitoring structurally full-rank systems under distributed observability constraint. Using structured systems theory, the problem is relaxed into two subproblems: first, sensing cost optimization; and second, networking cost optimization. Both problems are reformulated as combinatorial optimization problems. The sensing cost optimization is shown to have a polynomial-order solution. The networking cost optimization is shown to be NP-hard in general, but has a polynomial-order solution under specific conditions. A 2-approximation polynomial-order relaxation is provided for general networking cost optimization, which is... 

    Stabilizing control structures: An optimization framework

    , Article IEEE Transactions on Automatic Control ; 2021 ; 00189286 (ISSN) Mosalli, H ; Babazadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper presents a new optimization-based approach to determine the class of stabilizing control structures with the necessary set of feedback links for interconnected systems. The proposed approach relies on a graph theoretic interpretation and its equivalence in terms of binary linear programs (BLP). To carry out the primary goal, first, the stabilizability of an LTI system under the decentralized control structure is presented in terms of a BLP. Next, two graph-based criteria are proposed to characterize stabilizing control structures with the required feedback links. Finally, all possible stabilizing control structures with the necessary feedback links are derived via solving a set of... 

    Stabilizing control structures: An optimization framework

    , Article IEEE Transactions on Automatic Control ; Volume 67, Issue 7 , 2022 , Pages 3738-3745 ; 00189286 (ISSN) Mosalli, H ; Babazadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article presents a new optimization-based approach to determine the class of stabilizing control structures with the necessary set of feedback links for interconnected systems. The proposed approach relies on a graph-theoretic interpretation and its equivalence in terms of binary linear programs (BLPs). To carry out the primary goal, first, the stabilizability of a linear time-invariant (LTI) system under the decentralized control structure is presented in terms of a BLP. Next, two graph-based criteria are proposed to characterize stabilizing control structures with the required feedback links. Finally, all possible stabilizing control structures with the necessary feedback links are... 

    Soil-buried wave barriers for vibration control of structures subjected to vertically incident shear waves

    , Article Soil Dynamics and Earthquake Engineering ; Volume 109 , 2018 , Pages 312-323 ; 02677261 (ISSN) Rezaie, A ; Rafiee dehkharghani, R ; Mohtasham dolatshahi, K ; Mirghaderi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Traditionally, the effects of seismic forces on structures have been mitigated by installing supplemental energy dissipation systems. In this paper, a new approach is explored for the mitigation of earthquake-induced vibrations by obstructing the entrance of seismic energy to the structure through the insertion of some concrete wave barriers within the soil domain. To do so, genetic algorithm (GA) based adaptive optimization methodology is utilized that is capable of finding the efficient layout of the concrete barriers in a manipulated soil zone around the structure. The optimization methodology is coupled with finite element (FE) method for analyzing the complex wave propagation phenomenon... 

    Severe plastic deformation of rheoforged aluminum alloy A356

    , Article Materials Science and Engineering A ; Volume 558 , 2012 , Pages 371-376 ; 09215093 (ISSN) Dodangeh, A ; Kazeminezhad, M ; Aashuri, H ; Sharif University of Technology
    2012
    Abstract
    In this research, the electromagnetic stirring (EMS) process was used to produce semi-solid slurry with globular structure from cast A356 aluminum alloy. Then the slurry was forged in a die, which named rheoforging process. Utilizing multidirectional forging (MDF), the effect of severe plastic deformation on microstructure and mechanical properties of this alloy in dendritic and globular states was investigated. Shear punch, micro- and macro-hardness tests were used to study the mechanical properties of these samples. For metallographic examinations, the optical microscope equipped with the Clemex ® image analyzer software was used. Optimum globular structure of rheoforged specimens was... 

    Seismic performance assessment of steel frames equipped with a novel passive damper using a new damper performance index

    , Article Structural Control and Health Monitoring ; Volume 22, Issue 4 , 2015 , Pages 774-797 ; 15452255 (ISSN) Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    Seismic response of steel moment-resisting frames equipped with a novel passive damper called infilled-pipe damper (IPD) is investigated in this study. The IPD is a very economical and easily assembled structural control device with high energy absorption, invented recently by the authors. A simplified trilinear load-displacement model for IPD devices is suggested to be used in this study and further investigations. Next, criteria for IPD elements size selection are proposed for passive control of structures against earthquake loads. Steel frame structures of 5, 10, and 20 stories are designed without any IPD devices. Then, the frames are equipped with IPDs of different stiffness. The frames... 

    Reliability-based optimization of an active vibration controller using evolutionary algorithms

    , Article Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 26 March 2017 through 29 March 2017 ; Volume 10168 , 2017 ; 0277786X (ISSN); 9781510608214 (ISBN) Saraygord Afshari, S ; Pourtakdoust, S. H ; Fiberguide Industries; Frontiers Media; OZ Optics, Ltd.; Polytec, Inc.; The Society of Photo-Optical Instrumentation Engineers (SPIE) ; Sharif University of Technology
    SPIE  2017
    Abstract
    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost... 

    Regularization for optimal sparse control structures: a primal-dual framework

    , Article 2021 American Control Conference, ACC 2021, 25 May 2021 through 28 May 2021 ; Volume 2021-May , 2021 , Pages 3850-3855 ; 07431619 (ISSN); 9781665441971 (ISBN) Babazadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, the optimal trade-off between control structures and achievable closed-loop performance is addressed. Incorporation of sparsity promoting regularization terms to the primary objective function is a well-suited approach in feature selection and compressed sensing. By the evolving role of distributed and large-scale applications, modern optimal control problems have been equipped with regularization tools as well. However, the system dynamics and convex/nonconvex constraints in optimal control framework limits the effectiveness and applicability of regularization, enforce iterative or non-convex heuristics, and pose extensive exploration. In fact, available regularized feedback... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    Prediction of limiting activity coefficients for binary vapor-liquid equilibrium using neural networks

    , Article Fluid Phase Equilibria ; Volume 433 , 2017 , Pages 174-183 ; 03783812 (ISSN) Ahmadian Behrooz, H ; Bozorgmahry Boozarjomehry, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The activity coefficient at infinite dilution is a representative of the limiting non-ideality of a solute in a mixture. Various methods for the prediction of infinite dilution activity coefficients (IDACs) have been developed. Artificial neural networks are powerful mapping tools for nonlinear function approximations. Accordingly, an artificial neural network model is proposed for the prediction of the IDACs of binary systems where the properties of the individual components are used as inputs to the network. The input parameters of the neural network are the mixture temperature, critical temperature, critical pressure, critical volume, molecular weight, dipole moment and the acentric... 

    Performance of an offshore platform with MR dampers subjected to wave

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011 ; April , 2011 , Pages 242-247 ; 9781612849836 (ISBN) Sarrafan, A ; Hamid Zareh, S ; Khayyat, A. A ; Zabihollah, A ; Sharif University of Technology
    2011
    Abstract
    The vibration suppression of semi-actively controlled jacket-type offshore platforms using Magnetorheological (MR) dampers is studied. The main goal of using MR damper system is to reduce vibration caused by wave hydrodynamic forces. A fixed jacket-type offshore platform affected by wave-induced hydrodynamic forces and controlled by MR dampers is modelled as a semi-active controlled system with 30 DOFs. In comparison with earlier studies, an improvement in problem modelling is made. Based on the wave theory and Morison equation, an exosystem is designed to simulate regular wave forces. The necessary input voltage to MR dampers to generate desired damping force is derived by clipped optimal... 

    Performance evaluation of k out of n detector

    , Article 14th European Signal Processing Conference, EUSIPCO 2006, Florence, 4 September 2006 through 8 September 2006 ; 2006 ; 22195491 (ISSN) Norouzi, Y ; Greco, M. S ; Nayebi, M. M ; Sharif University of Technology
    2006
    Abstract
    In this paper the problem of k out of n detection, between sequence of M random bits is addressed. The main application of the result is in a radar system, when we want to detect a target (with unknown time of arrival (TOA)), using binary integration. Another application is in ESM systems, when the system wants to detect the existence of a swept jammer or a gated noise jammer. But as any other mathematical problem, it may have some other applications. In this paper some simple equations for P fa and P d calculation of a detector which detects the existence of sequence of n ones between M random bits, is derived. These equations are then used to find the optimal detector structure in some... 

    Optimum seismic design of steel framed-tube and tube-in-tube tall buildings

    , Article Structural Design of Tall and Special Buildings ; Volume 29, Issue 14 , 2020 Sarcheshmehpour, M ; Estekanchi, H. E ; Moosavian, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code-compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20-, 40-, and 60-story buildings with a framed tube as well as a tube-in-tube system. Such a design gives rise to a basis for the fair... 

    Optimum placement of supplementary viscous dampers for seismic rehabilitation of steel frames considering soil–structure interaction

    , Article Structural Design of Tall and Special Buildings ; Volume 29, Issue 1 , 2020 Sarcheshmehpour, M ; Estekanchi, H. E ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this paper, the significance of soil–structure interaction (SSI) in optimal placement of viscous dampers in steel frames is studied. Optimal placement of dampers is determined with the purpose of achieving performance objectives at three hazard levels using genetic algorithm optimization. Endurance time method is used for seismic nonlinear response analysis of the fixed-base and SSI included frames. The soil beneath the structures is considered as a homogeneous elastic half-space, and the soil–structure systems are modeled by the substructure method. Results indicate that at low excitation intensities, consideration of SSI results in maximum drift ratio reduction at all stories of the... 

    Optimum design of sunken reinforced enclosures under buckling condition

    , Article Applied Sciences (Switzerland) ; Volume 10, Issue 23 , 2020 , Pages 1-14 Omidi Bidgoli, M ; Kashyzadeh, K. R ; Rahimian Koloor, S. S ; Petrů, M ; Amiri, N ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Increasing the lifetime and improving the performance of structures through redesign and optimization are important, especially in marine structures. In general, there are two main groups of marine structures: onshore and offshore structures. Most marine structures are offshore, and these are divided into two categories: floating or sunken. One of the important parameters in the design of sunken structures is the critical load resulting from the buckling of walls, which can cause damage to the structure. In the present paper, three rectangular aluminum and steel compartments of different conditions and sizes were modeled using design analysis methods. Then, different finite element analyses... 

    Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

    , Article Structural Engineering and Mechanics ; Volume 81, Issue 1 , 2022 , Pages 93-102 ; 12254568 (ISSN) Khajehzadeh, M ; Kalhor, A ; Tehrani, M. S ; Jebeli, M ; Sharif University of Technology
    Techno-Press  2022
    Abstract
    The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set... 

    Optimum code structures for positive optical CDMA using normalized divergence maximization criterion

    , Article IEEE Transactions on Communications ; Volume 56, Issue 9 , 2008 , Pages 1414-1421 ; 00906778 (ISSN) Mashhadi, S ; Salehi, J. A ; Sharif University of Technology
    2008
    Abstract
    In this letter we consider optimum code structure for positive optical code division multiple-access (optical CDMA) systems. Positive systems are a class of systems that operate with positive real numbers only. We consider the effect of multipleaccess interference in our model and show that code design for both On-Off Keying (OOK) and Binary PPM optical CDMA systems results in the same solutions. Furthermore, we show that a class of codes known as optical orthogonal codes (OOCs) are the best possible positive codes. In obtaining the results we define normalized divergence based on signal-to-multipleaccess interference ratio (SIR) for a multiple-access system in a useful manner and use it as... 

    Optimum arrangement of braces in jacket platform based on strength and ductility

    , Article Marine Structures ; Volume 71 , 2020 Tabeshpour, M. R ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nonlinear behavior of jacket platforms is important in both design and rehabilitation issues that depends on the bracing arrangement. Both ductility and strength of the structures derived from pushover analysis are highly related to configuration of the braces. Considering a suitable criterion such as constant weight or constant stiffness and period of the structure in all arrangement cases, one can compare the capacity curves and find the best configuration. In this paper a simple logical method for investigating the strength and ductility of the jacket structure is presented, it is shown that global geometry and configuration of the braces are very important and effective in both strength... 

    Optimized nanoporous alumina coating on AA3003-H14 aluminum alloy with enhanced tribo-corrosion performance in palm oil

    , Article Ceramics International ; Volume 46, Issue 6 , 2020 , Pages 7306-7323 Sarraf, M ; Nasiri Tabrizi, B ; Dabbagh, A ; Basirun, W. J ; Sukiman, N. L ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study aimed to prepare nanoporous anodic alumina on AA3003-H14 aluminum alloy using a mild anodization process with minimal working voltage and treatment time. The microstructural features, mechanical properties, and tribocorrosion behavior of the coatings were assessed to determine the optimum conditions for the fabrication of nanoporous anodic alumina on AA3003-H14 alloy. The microstructural analysis showed both uniform and nonuniform pore nucleations during anodization in H2SO4/C2H2O4, H2SO4/H2CrO4, and EG/H2O/NH4F electrolytes, where the optimal nanoporous structure with an average thickness, porosity, pore diameter, and interpore distance of 382 nm, 19%, 16 nm, and 35 nm,... 

    Optimization of torsion beam cross section using a combined FEM-dynamic simulation

    , Article SAE Technical Papers ; 2003 ; 01487191 (ISSN) Durali, M ; Behravesh, B ; Sharif University of Technology
    SAE International  2003
    Abstract
    The compound axle is a space saving suspension component that is relatively inexpensive and easy to install. Therefore it is used in rear suspension system of most front wheel drive passenger cars. This article present an optimum design algorithm for this component. A typical cross section for this the torsion beam of the axle is selected as a basis design. Using finite element methods, kinematics and elasto-kinematics behaviors of the section in vehicle normal maneuvers have been calculated. The acquired dynamic characteristics of the member was entered into a dynamic simulation program and the effect of geometrical parameters of torsion beam on the vehicle handling was studied. Using DOE...