Loading...
Search for: structural-systems
0.017 seconds
Total 35 records

    Plastic design of eccentrically braced frames with shear panels

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 170, Issue 1 , 2017 , Pages 17-32 ; 09650911 (ISSN) Akbari Hamed, A ; Mofid, M ; Sharif University of Technology
    Thomas Telford Services Ltd  2017
    Abstract
    This paper introduces a new earthquake-resistant building design featuring eccentrically braced frames with steel wall shear panels. It also proposes closed-form expressions for analysis and extension of the existing failure mode control design method for the new structural system. Closed-form equations for internal forces were obtained, and probable failure mechanisms and corresponding lateral load multipliers for secondary effects were identified. Selection of member profiles was completed by the mechanism equilibrium curve concept. Pushover modelling was then performed with plastic hinge distribution corresponding to failure mechanisms. Only small differences were found between the... 

    The effect of soil–structure interaction on the seismic risk to buildings

    , Article Bulletin of Earthquake Engineering ; Volume 16, Issue 9 , 2018 , Pages 3653-3673 ; 1570761X (ISSN) Khosravikia, F ; Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    This paper studies the effect of soil–structure interaction (SSI) on the seismic risk estimates of buildings. Risk, in this context, denotes the probability distribution of seismic monetary loss due to structural and nonstructural damage. The risk analysis here uncovers the probability that SSI is beneficial, detrimental, or uninfluential on seismic losses. The analyses are conducted for a wide range of buildings with different structural systems, numbers of stories, and foundation sizes on various soil types. A probabilistic approach is employed to account for prevailing sources of uncertainty, i.e., those in ground motion and in the properties of the soil–structure system. In this... 

    Effect of multiphase fluid and functionally graded density fluid on the stability of spinning partially-filled shells

    , Article International Journal of Mechanical Sciences ; Volume 140 , 2018 , Pages 109-118 ; 00207403 (ISSN) Sahebnasagh, M ; Nikkhah Bahrami, M ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The effect of a multiphase fluid, including an arbitrary number of liquid phases, and a functionally graded density fluid on the stability of rotating partially-filled cylindrical shells is investigated. The first-order shear shell theory is used for modeling the structural dynamics of the shell and a 2D model is introduced based on the Navier–Stokes equations, for fluid motion. The multiphase and the functionally graded density fluids are arranged according to the mass density in a steady state condition due to centrifugal forces. Using the boundary conditions between liquid phases and the boundary conditions of the fluid on the cylinder wall, the coupled fluid-structure system model is... 

    Evaluation of PR steel frame connection with torsional plate and its optimal placement

    , Article Scientia Iranica ; Volume 25, Issue 3A , 2018 , Pages 1025-1038 ; 10263098 (ISSN) Moghadam, A ; Estekanchi, H.E ; Yekrangnia, M ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Characteristics of connections in steel moment-resisting frames are of utmost importance in determining the seismic performance of these structural systems. The results of several previous experimental studies have indicated that Partially Restrained (PR) connections possess excellent properties, which make them a reliable substitution for Fully Restrained (FR) connections. These properties include needing less base shear, being more economic, and, in many cases, being able to absorb more energy. In this study, the behavior of two proposed PR connections with torsional plate is studied through finite element simulations. The results of the numerical studies regarding initial stiffness and... 

    Displacement ratios for structures with material degradation and foundation uplift

    , Article Bulletin of Earthquake Engineering ; Volume 17, Issue 9 , 2019 , Pages 5133-5157 ; 1570761X (ISSN) Dolatshahi, K. M ; Vafaei, A ; Kildashti, K ; Hamidia, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this paper, combined effects of material degradation, p-delta, and foundation uplift are incorporated in a soil-structure-interaction (SSI) framework to assess seismic response of a single-degree-of-freedom system. The considered phenomenological systems represent a column with a lumped mass on top is placed on a rigid foundation. The foundation is mounted on Winkler springs and dashpots to take account of soil-foundation compliance and material/radiation damping. The springs are tensionless to guarantee that uplift is properly modelled. The model is verified for two specific limit cases with the code and literature to make sure that the model is capable of capturing SSI and foundation... 

    Effect of damped outriggers arrangement on the seismic response of high-rise steel structures

    , Article Scientia Iranica ; Volume 27, Issue 3 A , 2020 , Pages 1075-1090 Asadi Ghoozhdi, H ; Mofid, M ; Sharif University of Technology
    Sharif University of Technology  2020
    Abstract
    Recently, a novel structural system, which is defined as a damped outrigger system, has been proposed to control the dynamic vibration of tall buildings. This paper examines the seismic performance of tall buildings involving multiple outriggers equipped with viscous dampers. In this respect, a dual structural system (braced moment frame) is selected as a bare structure. In addition, the number and position of outriggers are assumed to be variable along the structure height. Nonlinear Response History Analysis (RHA) is performed to evaluate the efficiency of the damped-outrigger system under eight-scaled ground motions. The results are presented based on the average of all ground motions.... 

    Hysteretic response of confined masonry walls by Prandtl neural networks

    , Article 1st International Conference on Advances and Trends in Engineering Materials and their Applications, AES-ATEMA'2007, Montreal, QC, 6 August 2007 through 10 August 2007 ; 2007 , Pages 525-533 ; 19243642 (ISSN) ; 0978047907 (ISBN); 9780978047900 (ISBN) Joghataie, A ; Farrokh, M ; Mohebbi, M ; Sharif University of Technology
    2007
    Abstract
    In this paper a new method of modeling shear force-displacement relationship for confined masonry walls by neural networks has been presented. Although the mathematical models have been very useful in the simulations so far, however developing more accurate models is necessary. While developing precise mathematical models for highly hysteretic materials is itself challenging and practically cumbersome, the use of learning algorithms is an attractive alternative. The issue of material modeling by neural networks has been a challenging one itself, noticing available neural networks have some limitations in the learning of non-linearity. In this paper a new type neural network, called Prandtl... 

    Evaluation of the seismic performance factors for steel diagrid structural systems using FEMA P-695 and ATC-19 procedures

    , Article Bulletin of Earthquake Engineering ; Volume 18, Issue 10 , 2020 , Pages 4873-4910 Rofooei, F. R ; Seyedkazemi, A ; Sharif University of Technology
    Springer  2020
    Abstract
    The diagrid structural systems are mainly used for their structural capabilities and architectural aesthetic possibilities which are provided by the unique geometric configurations of these systems. However, the seismic performance factors of these structural systems are not yet explicitly recommended in the existing building codes. In this study, the seismic performance factors (SPFs) of 6- to 24-story steel diagrid structures are determined considering the post-buckling behavior of diagonal members in compression. Also, the effect of change in span length and the diagonal angles on the SPFs of diagrid structures is studied. The ATC-19 coefficient method is used for calculating the SPFs... 

    Incorporation of Soil-Structure Interaction into seismic performance evaluation of buildings

    , Article 8th US National Conference on Earthquake Engineering 2006, San Francisco, CA, 18 April 2006 through 22 April 2006 ; Volume 15 , 2006 , Pages 9008-9017 ; 9781615670444 (ISBN) Bayat, M. R ; Ghannad, M. A ; Sharif University of Technology
    2006
    Abstract
    It has been known for many years that the type of soil under structures affects the structural performance during earthquakes. In fact, the soil affects the structural response in two ways, through the change in the free-field motion (usually known as the site effect) and due to Soil- Structure Interaction (SSI). The site effect has been included in the seismic codes from the most beginning. However, the SSI effect had not attracted much attention. The most significant intervention in this regard has been the 1978 inclusion of SSI in the tentative provisions of ATC3-06 in the United States, which is based on the results of studies on elastic response of soil structure systems. The effect of... 

    On Bayesian active vibration control of structures subjected to moving inertial loads

    , Article Engineering Structures ; Volume 239 , 2021 ; 01410296 (ISSN) Moradi, S ; Eftekhar Azam, S ; Mofid, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study introduces a novel Bayesian framework for online and real-time vibration control of beam type structures, which represent a comprehensive control system associated with input-state algorithms. Control design systems typically require knowledge of system states, which in structures are displacements and velocities at some degrees of freedom. Currently, full-field measurements of displacements and velocities in large structural systems are not feasible. Also, properties of the moving inertial loads as key parameters in control designs are assumed known; however, in practice, measuring their characteristics is a challenging issue. As a remedy, an observer is required to estimate... 

    Seismic evaluation of steel plate shear wall systems considering soil-structure interaction

    , Article Soil Dynamics and Earthquake Engineering ; Volume 145 , 2021 ; 02677261 (ISSN) Sarcheshmehpour, M ; Shabanlou, M ; Meghdadi, Z ; Estekanchi, H. E ; Mofid, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study investigates the various effects of Soil-Structure Interaction (SSI) on the seismic behavior of steel frames with Steel Plate Shear Wall (SPSW) lateral resisting systems. Nine steel frames with various aspect ratios are studied under multiple seismic hazard levels. The SPSWs are modeled based on the strip model concept, and the Soil-Structure Systems are simulated using the substructure method. The soil beneath the structure is considered as a homogeneous elastic half-space. The Endurance Time method is exploited for nonlinear dynamic analysis of the fixed-base structures and soil-structure systems. Results indicate that use of fixed-base models leads to the significant... 

    Controlling the seismic response of structures under near-field earthquakes with fluid/structure interaction of cylindrical liquid tanks

    , Article European Journal of Environmental and Civil Engineering ; Volume 26, Issue 2 , 2022 , Pages 570-593 ; 19648189 (ISSN) Waezi, Z ; Attari, N. K. A ; Rofooei, F. R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, the effectiveness of using nonlinear fluid/structure interaction for controlling the seismic response of the structures under near-field earthquake is investigated. For this purpose an SDOF Structure is considered which is equipped with the circular cylindrical liquid tank. Considering its fundamental mode of vibration, the structure is an idealised model of multi-degree of freedom system. Under 72 horizontal near-field earthquake excitations, the dynamic response of this system is examined studying three liquid sloshing modes. The dynamic response is investigated in the neighbourhood of 1:1 resonance between first unsymmetrical sloshing mode and SDOF structural mode. For this... 

    Blind identification of soil-structure systems

    , Article Soil Dynamics and Earthquake Engineering ; Volume 45 , February , 2013 , Pages 56-69 ; 02677261 (ISSN) Ghahari, S. F ; Ghannad, M. A ; Taciroglu, E ; Sharif University of Technology
    2013
    Abstract
    Surrounding soil can drastically influence the dynamic response of buildings during strong ground shaking. Soil's flexibility decreases the natural frequencies of the system; and in most cases, soil provides additional damping due to material hysteresis and radiation. The additional damping forces, which are in non-classical form, render the mode shapes of the soil-structure system complex-valued. The response of a soil-foundation system can be compactly represented through impedance functions that have real and imaginary parts representing the stiffness and damping of the system, respectively. These impedance functions are frequency-dependent, and their determination for different... 

    The effect of foundation embedment on inelastic response of structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 38, Issue 4 , 2009 , Pages 423-437 ; 00988847 (ISSN) Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2009
    Abstract
    In this research, a parametric study is carried out on the effect of soil-structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub-structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub-structure is considered as a homogeneous half-space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil-structure system is then analyzed subjected... 

    Modeling of forced vibration of marine structural systems under dynamic loads of sea waves

    , Article 18th Australasian Coastal and Ocean Engineering Conference 2007, COASTS 2007 and the 11th Australasian Port and Harbour Conference 2007, PORTS 2007, Melbourne, VIC, 18 July 2007 through 20 July 2007 ; 2007 , Pages 560-565 ; 9781622764280 (ISBN) Jafari, A ; Kanani, A ; Farahani, R. J ; Sharif University of Technology
    2007
    Abstract
    Predicting the reaction and function of marine structures towards sea waves, is of significant importance in the design of them. There are some uncertain parameters which can be optimized to increase safety factors as well as to decrease the costs. Knowing the maximum oscillation of marine structures due to dynamic forces will play a great role on structures' safe design. The objective of this paper is to employ a reliable numerical technique to analyze the interaction between marine structures and sea waves. Simulink is an object oriented dynamic simulation package. It can develop new analysis tools aimed at a better understanding and prediction of the physics that governs the behavior of...