Loading...
Search for: structure-interaction
0.01 seconds
Total 243 records

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    The effect of foundation embedment on inelastic response of structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 38, Issue 4 , 2009 , Pages 423-437 ; 00988847 (ISSN) Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2009
    Abstract
    In this research, a parametric study is carried out on the effect of soil-structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub-structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub-structure is considered as a homogeneous half-space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil-structure system is then analyzed subjected... 

    Flexural instability of viscoelastic spinning cylinders partially filled with liquid

    , Article International Journal of Structural Stability and Dynamics ; Volume 9, Issue 1 , 2009 , Pages 45-60 ; 02194554 (ISSN) Dehghani Firouz Abadi, R ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    This paper deals with the determination of free vibration characteristics and instability conditions of flexible spinning cylinders partially filled with fluid. Using the linearized Navier-Stokes equations for the incompressible, inviscid flow, a 2D model is developed for fluid motion at each section of the cylinder. The forces exerted on the cylinder wall as a result of the fluid motion are calculated as functions of lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton principle, the governing equations of flexural motion of the cylinder are derived and then combined with the equations describing the fluid forces to obtain the coupled field equations of the... 

    Catamaran motion simulation based on moving grid technique

    , Article Journal of Marine Science and Technology ; Volume 17, Issue 2 , 2009 , Pages 128-136 ; 10232796 (ISSN) Jahanbakhsh, E ; Panahi, R ; Seif, M. S ; Sharif University of Technology
    2009
    Abstract
    General purpose software is developed to simulate 6-DoF fluid-structure interaction in two-phase viscous flow. It is a VoF-fractional step solver based on the finite-volume discretization which uses a boundary-fitted body-attached hexahedral grid as the motion simulation strategy. As an application, a high-speed planing catamaran is simulated in steady forward motion as well as in turning maneuver. Results are compared with the available data and good qualitative and quantitative agreements are achieved. Numerical schemes and the solution algorithm of the software are consistent and show a good capability to model highly nonlinear ship motions. It can be further developed to represent a more... 

    Fluid-structure interaction simulation of blood flow and cerebral aneurysm: effect of partly blocked vessel

    , Article Journal of Vascular Research ; Volume 56, Issue 6 , 2019 , Pages 296-307 ; 10181172 (ISSN) Saeedi, M ; Shamloo, A ; Mohammadi, A ; Sharif University of Technology
    S. Karger AG  2019
    Abstract
    In this study, using fluid-structure interaction (FSI), 3-dimensional blood flow in an aneurysm in the circle of Willis-which is located in the middle cerebral artery (MCA)-has been simulated. The purpose of this study is to evaluate the effect of a partly blocked vessel on an aneurysm. To achieve this purpose, two cases have been investigated using the FSI method: in the first case, an ideal geometry of aneurysm in the MCA has been simulated; in the second case, modeling is performed for an ideal geometry of the aneurysm in the MCA with a partly blocked vessel. All boundary conditions, properties and modeling methods were considered the same for both cases. The only difference between the... 

    Displacement ratios for structures with material degradation and foundation uplift

    , Article Bulletin of Earthquake Engineering ; Volume 17, Issue 9 , 2019 , Pages 5133-5157 ; 1570761X (ISSN) Dolatshahi, K. M ; Vafaei, A ; Kildashti, K ; Hamidia, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this paper, combined effects of material degradation, p-delta, and foundation uplift are incorporated in a soil-structure-interaction (SSI) framework to assess seismic response of a single-degree-of-freedom system. The considered phenomenological systems represent a column with a lumped mass on top is placed on a rigid foundation. The foundation is mounted on Winkler springs and dashpots to take account of soil-foundation compliance and material/radiation damping. The springs are tensionless to guarantee that uplift is properly modelled. The model is verified for two specific limit cases with the code and literature to make sure that the model is capable of capturing SSI and foundation... 

    Assessment of foundation mass and earthquake input mechanism effect on dam–reservoir–foundation system response

    , Article International Journal of Civil Engineering ; Volume 17, Issue 4 , 2019 , Pages 473-480 ; 17350522 (ISSN) Ghaemian, M ; Noorzad, A ; Mohammadnezhad, H ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    Concrete dams are one of the most important infrastructures in every country and the seismic safety assessment of them is a major task in dam engineering field. Dam–foundation–reservoir system analysis is a complex interaction problem because this system consists of three domains with different behaviors. For accurate analysis of this system, some important factors should be considered such as foundation mass and earthquake input mechanism. In this paper, the effect of foundation mass and earthquake input mechanism on seismic response of concrete gravity dam is investigated. For this purpose, two different methods are introduced for modeling of massed semi-infinite foundation in finite... 

    In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque

    , Article International Journal of Pharmaceutics ; Volume 559 , 2019 , Pages 113-129 ; 03785173 (ISSN) Shamloo, A ; Amani, A ; Forouzandehmehr, M ; Ghoytasi, I ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Coronary artery disease is the first cause of death across the world. Targeted delivery of therapeutics through controlled release of micro- and nano-particles remains a very capable approach to develop new strategies in treating restenosis and atherosclerotic plaques. In this research, to produce the arterial geometry, an image-processing was done using CT-scan images of a LAD coronary artery. After implementing the finite element mesh, the Fluid-Structure Interaction (FSI) simulation based on physiological boundary conditions was performed. Next, a Lagrangian description of particles dynamics in a non-Newtonian blood flow considering momentum equation of motion for each particle and the... 

    Sloshing effects on supersonic flutter characteristics of a circular cylindrical shell partially filled with liquid

    , Article International Journal for Numerical Methods in Engineering ; Volume 117, Issue 8 , 2019 , Pages 901-925 ; 00295981 (ISSN) Zarifian, P ; Ovesy, H. R ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This paper aims to revisit the effect of sloshing on the flutter characteristics of a partially liquid-filled cylinder. A computational fluid-structure interaction model within the framework of the finite element method is developed to capture fluid-structure interactions arising from the sloshing of the internal fluid and the flexibility of its containing structure exposed to an external supersonic airflow. The internal liquid sloshing is represented by a more sophisticated model, referred to as the liquid sloshing model, and the shell structure is modeled by Sanders' shell theory. The aerodynamic pressure loading is approximated by the first-order piston theory. The initial geometric... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Dynamics and stability analysis of rotating cylindrical shells in annular fluid medium

    , Article International Journal of Structural Stability and Dynamics ; Volume 20, Issue 8 , 2020 Abdollahi, R ; Firouz Abadi, R. D ; Rahmanian, M ; Sharif University of Technology
    World Scientific  2020
    Abstract
    Stability and dynamics of rotating coaxial cylindrical shells conveying incompressible and inviscid fluid are investigated. The interior shell is assumed to be flexible while the exterior cylinder is rigid. Using Sander's-Koiter theory assumptions and following Hamilton's principle, governing equations of motion are determined in their integral form. Employing the extended Galerkin method of solution, the integral equations of motion are projected to their equivalent system of algebraic equations. Fluid equations are fundamentally based on the linearized inviscid Navier-Stokes equations. Impermeability condition on the fluid and structure interface as well as the zero radial velocity... 

    Seismic performance of nonlinear soil-structure systems located on soft soil considering foundation uplifting and soil yielding

    , Article Structures ; Volume 28 , December , 2020 , Pages 973-982 Jafarieh, A. H ; Ghannad, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In most of researches on soil-structure systems, it is assumed that the foundation is bonded to the ground where no foundation uplift is allowed. Uplifting makes changes in force–displacement behavior of the soil-structure systems, which in turn alters structural demands. In this research, a set of non-dimensional parameters is considered which controls the behavior of uplifting systems. The effects of foundation uplift on response of soil-structure system are investigated parametrically through time history analysis for a wide range of systems subjected to harmonic excitation and also ground motions recorded on soft soil with predominant period. It is seen that the response of systems with... 

    Effects of salinity, ion type, and aging time on the crude oil-brine interfacial properties under gravity condition

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , December , 2020 Khajepour, H ; Akhlaghi Amiri, H. A ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the impacts of salinity, ion type, and aging process were investigated on coalescence and spreading of crude oil interfaces (including an oil droplet and an oil film) under gravity, through drop rest time measurement techniques, aided by an image analysis system. Three different salt solutions of NaCl, Na2SO4, and MgCl2 were studied at different ionic strengths, ranged from 1% to 150% of Persian Gulf seawater ionic strength. According to the results, aging the oil droplet in the brine increased the interfacial rigidity. Addition of a gas phase - by thinning the surface oil film - almost doubled both rest time and spreading time values. In the aged mode, the presence of salt in... 

    A numerical approach on side resistance of drilled shafts embedded in sandy soils

    , Article International Journal of Geotechnical Engineering ; Volume 14, Issue 6 , 2020 , Pages 644-652 Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This study numerically investigates the side resistance of drilled shafts (bored piles) in sand using FLAC2D computer program. The results of the equations available in the literature are compared with the results of the present numerical study. A series of analyses is also conducted to assess the effects of various soil and pile parameters on the magnitude of side resistance of bored piles embedded in sand. Furthermore, the coupling (combined) effect of coefficient of lateral earth pressure with friction angle, and the coefficient of lateral earth pressure with a unit weight of soil on side resistance are investigated. The results show that the maximum effect of K0 on side resistance occurs... 

    Finite element modelling and seismic behaviour of integral abutment bridges considering soil–structure interaction

    , Article European Journal of Environmental and Civil Engineering ; Volume 24, Issue 6 , January , 2020 , Pages 767-786 Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    A comprehensive non-linear finite element (FE) model of integral abutment bridges (IABs) is presented to facilitate the analysis of such bridges using commercial software, especially under seismic loading. The presented model is capable of capturing non-linearity in both the structure and soil, in addition to considering far-field soil response. The model is simple enough to be used for practical purposes. On the other hand, many aspects of seismic behaviour of IABs are unclear, due to complicated soil–structure interaction. Using the presented model, a parametric study is performed to identify the effects of bridge length, abutment type and soil type on seismic behaviour of IABs. Non-linear... 

    Optimum placement of supplementary viscous dampers for seismic rehabilitation of steel frames considering soil–structure interaction

    , Article Structural Design of Tall and Special Buildings ; Volume 29, Issue 1 , 2020 Sarcheshmehpour, M ; Estekanchi, H. E ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this paper, the significance of soil–structure interaction (SSI) in optimal placement of viscous dampers in steel frames is studied. Optimal placement of dampers is determined with the purpose of achieving performance objectives at three hazard levels using genetic algorithm optimization. Endurance time method is used for seismic nonlinear response analysis of the fixed-base and SSI included frames. The soil beneath the structures is considered as a homogeneous elastic half-space, and the soil–structure systems are modeled by the substructure method. Results indicate that at low excitation intensities, consideration of SSI results in maximum drift ratio reduction at all stories of the... 

    Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow

    , Article Applied Ocean Research ; Volume 94 , 2020 Shahali, P ; Haddadpour, H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper investigates the nonlinear dynamic response of a viscoelastic pipe conveying fluid subjected to a uniform external cross flow based on the Euler-Bernoulli theory. The main objective of this work is to find the proper viscoelastic coefficients to mitigate the dynamic response of a marine riser. A nonlinear oscillator is utilized to simulate the mean drag force and the vortex-induced lift force. Also, the pipe material is assumed to be viscoelastic and consisted of the Kelvin-Voigt type. The extended Hamilton's principle along with the Galerkin discretization are employed to construct the nonlinear model of the coupled fluid-structure system. Moreover, the assumed mode method along... 

    Impact of trim on added resistance of KRISO container ship (KCS) in head waves: An experimental and numerical study

    , Article Ocean Engineering ; Volume 211 , 2020 Shivachev, E ; Khorasanchi, M ; Day, S ; Turan, O ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, added resistance and motion responses of KRISO Container Ship (KCS) were evaluated experimentally and numerically in six different trim angles. A series of towing tank experiments were performed for six different trim angles at design speed in calm water and regular head waves. The ship motions and added resistance were measured for several wavelength conditions considering short and long wave ranges with wave steepness of 1/60. Next, computations of the towed model in calm water and waves were performed using Unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD and 3-D potential methods. Effects of trim angles on added resistance were analysed and results concerning the... 

    A numerical solution of 2D Buckley-Leverett equation via gradient reproducing kernel particle method

    , Article CMES - Computer Modeling in Engineering and Sciences ; Volume 32, Issue 1 , 2008 , Pages 17-33 ; 15261492 (ISSN) Mohamadi Shodja, H ; Hashemian, A ; Sharif University of Technology
    2008
    Abstract
    Gradient reproducing kernel particle method (GRKPM) is a meshless technique which incorporates the first gradients of the function into the reproducing equation of RKPM. Therefore, in two-dimensional space GRKPM introduces three types of shape functions rather than one. The robustness of GRKPM's shape functions is established by reconstruction of a third-order polynomial. To enforce the essential boundary conditions (EBCs), GRKPM's shape functions are modified by transformation technique. By utilizing the modified shape functions, the weak form of the nonlinear evolutionary Buckley-Leverett (BL) equation is discretized in space, rendering a system of nonlinear ordinary differential equations...