Loading...
Search for: structure-response
0.006 seconds
Total 69 records

    Application of damage spectra as seismic intensity measures in endurance time method for steel moment-resisting frames

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 53-64 ; 10263098 (ISSN) Maleki Amin, M. J ; Estekanchi, H. E ; Sharif University of Technology
    Abstract
    In seismic resistant design of moment frames, the structure behavior under earthquakes has to be examined considering various damage criteria. Damage indices can be estimated by Endurance Time (ET) method with minimum computational effort. The quality of this estimation can be improved in different ways. In this paper, the graphs of a certain damage index versus natural period of the structure, called damage spectra, are produced applying intensifying ET records and scaled Ground Motions (GM). Then, the excitation duration of ET acceleration functions (target time) is modified in order to reach acceptable consistency between ET and GM damage spectra. Moreover, various damage indices of a... 

    The effect of foundation embedment on inelastic response of structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 38, Issue 4 , 2009 , Pages 423-437 ; 00988847 (ISSN) Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2009
    Abstract
    In this research, a parametric study is carried out on the effect of soil-structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub-structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub-structure is considered as a homogeneous half-space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil-structure system is then analyzed subjected... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,... 

    A semi-active SMA-MRF structural stability element for seismic control in marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Zareie, S ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The stability and integrity of structures under indeterminant external loadings, particularly earthquakes, is a vital issue for the design and safe operation of marine and offshore structures. Over the past decades, many structural control systems, such as viscous-based systems, have been developed and embedded in marine and offshore structures, particularly oil platforms to maintain the stability and mitigate the seismic hazards. Rapid improvement in intelligent materials, including shape memory alloys (SMAs) and Magnetorheological fluid (MRF), have led to the design and development of efficient structural control elements. The present work aims to establish a framework for the structural... 

    Seismic damage and life cycle cost assessment of unanchored brick masonry veneers

    , Article Engineering Structures ; Volume 260 , 2022 ; 01410296 (ISSN) Reza Khalili, M ; Ghahremani Baghmisheh, A ; Estekanchi, H. E ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper develops the seismic damage models of brick masonry veneer attached to the masonry infill without metal ties and assesses the life cycle cost of veneers subjected to earthquake excitation. Even though anchoring veneers to the backup wall has been prescribed in recent building codes, most of the existing brick veneers in seismic prone areas around the world lack the anchoring details. Besides, the damage and consequence models of masonry façades have not been presented in the FEMA-P58 database restricting detailed performance evaluation of buildings with unanchored masonry veneers. This study develops detailed finite element models to simulate various failure modes of the masonry... 

    Cyclic performance assessment of damaged unreinforced masonry walls repaired with steel mesh reinforced shotcrete

    , Article Engineering Structures ; Volume 253 , 2022 ; 01410296 (ISSN) Ehteshami Moeini, M ; Razavi, S. A ; Yekrangnia, M ; Pourasgari, P ; Abbasian, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Unreinforced masonry (URM) buildings are rather popular around the globe due to low construction costs, even though they can be prone to substantial damage caused by even moderate earthquakes. Numerous URM buildings that have experienced damages from past earthquakes require to be upgraded or at least return to their undamaged state in order to be able to withstand future earthquakes. In many cases, reconstruction is not the best choice because of financial and time restrictions. As such, repair/retrofit is the best choice, assuring the post-earthquake serviceability. Furthermore, seismic repair/retrofit can be a cost-efficient method to avoid reconstruction complexities and expenses. In... 

    On the multi-scale computation of un-bonded flexible risers

    , Article Engineering Structures ; Volume 32, Issue 8 , August , 2010 , Pages 2287-2299 ; 01410296 (ISSN) Bahtui, A ; Alfano, G ; Bahai, H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    2010
    Abstract
    The purpose of this paper is to model the detailed effects of interactions that take place between components of un-bonded flexible risers, and to study the three-dimensional motion responses of risers when subjected to axial loads, bending moments, and internal and external pressures. A constitutive law for un-bonded flexible risers is proposed and a procedure for the identification of the related input parameters is developed using a multi-scale approach. A generalized finite element structural model based on the Euler-Bernoulli beam theory is developed in which the constitutive law is embedded. The beam theory is enhanced by the addition of suitable pressure terms to the generalized... 

    Stability analysis of arch dam abutments due to seismic loading

    , Article Scientia Iranica ; Volume 24, Issue 2 , 2017 , Pages 467-475 ; 10263098 (ISSN) Mostafaei, H ; Sohrabi Gilani, M ; Ghaemian, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Abutments of concrete arch dams are usually crossed by several joints, which may create some rock wedges. Abutment stability analysis and controlling the probable wedge movements is one of the main concerns in the design procedure of arch dams that should be investigated. For decades, the quasi-static method, due to its simple approach, has been used by most of dam designers. In this study, the dynamic method is presented and the obtained time history of sliding safety factors is compared with the quasi-static results. For this purpose, all three components of Kobe (1979) and Imperial Valley (1940) earthquakes are applied to the wedge, simultaneously, and the magnitude and direction of wedge... 

    Effect of shape memory alloy-magnetorheological fluid-based structural control system on the marine structure using nonlinear time-history analysis

    , Article Applied Ocean Research ; Volume 91 , 2019 ; 01411187 (ISSN) Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Marine structures, as key elements in the global energy network, constantly are subjected to harsh environmental loading conditions. Therefore, reliable yet efficient structural control mechanisms are required to ensure their safe functionality and structural stability. In the present work, a novel hybrid structural control element for marine structures has been designed in which the superelasticity effect of shape memory alloy (SMA) and damping controllability of magnetorheological fluid (MRF), as smart materials, have been combined. The novel system does not require huge external energy for activation and in addition, the system has the ability to be tuned for variable loading conditions....