Loading...
Search for: supercapacitors
0.005 seconds
Total 109 records

    One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 39 , 2016 , Pages 17496-17505 ; 03603199 (ISSN) Shahrokhian, S ; Mohammadi, R ; Asadian, E ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A three-dimensional (3D) graphene/Nickel oxide (ERGO/NiO) composite electrode have been fabricated directly on a Nickel foam substrate via a one-step electrochemical co-deposition in an aqueous solution containing Nickel nitrate and GO. By using this simple and one-step electrochemical deposition, it is possible to produce binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. It is observed from FE-SEM images that graphene oxide sheets affect the electrodeposition of nickel oxide. The optimized ErGO/NiO electrode developed in this work exhibits high charge storage capacity with a specific capacitance of 1715.5 F g−1 at... 

    In-situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: Application as a new high-performance supercapacitor

    , Article Electrochimica Acta ; Volume 206 , 2016 , Pages 317-327 ; 00134686 (ISSN) Shahrokhian, S ; Mohammadi, R ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Demand for more efficient energy storage devices stimulates efforts to search and develop new materials and composites with promising properties. In this regard, composite materials, including carbonaceous materials and metal oxides have attracted a great attention due to better electrochemical performance as compared to their single material analogues. For the first time, herein, we report a new and simple procedure for preparing porous highly oriented pyrolytic graphite/nickel hydroxide composite (P-HOPG/Ni(OH)2) via a fast and simple two-step electrochemical method including potentiostatic routes. In the first step, a low anodic potential (2 V) was applied to pristine HOPG in 0.5 M H2SO4... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    In-situ fabrication of nanosheet arrays on copper foil as a new substrate for binder-free high-performance electrochemical supercapacitors

    , Article Journal of Electroanalytical Chemistry ; Volume 802 , 2017 , Pages 48-56 ; 15726657 (ISSN) Mohammadi, R ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    A facile hydrothermal method and subsequent electroactivation have been developed to fabricate three-dimensional (3D) CuO nanosheet arrays on the copper foil substrate, which can be used directly as a binder-free electrode for supercapacitor applications. Under optimum conditions, by using this facile method, a high capacitance of 125 mF/cm2 at a current density of 0.3 mA/cm2 is obtained. The prepared supercapacitor showed a good rate capability (46.4% capacitance retention, when the current density is increased to more than 30 times) and an excellent cyclability (more than 88% capacitance retention after 3000 cycles). © 2017 Elsevier B.V  

    One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 33 , 2017 , Pages 21073-21085 ; 03603199 (ISSN) Asen, P ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Abstract
    A new ternary nanocomposite based on graphene oxide (GO), polypyrrole (PPy) and vanadium pentoxide (V2O5) is obtained via one-step electrochemical deposition process. Electrochemical deposition of V2O5, PPy and GO on a stainless steel (SS) substrate is conducted from an aqueous solution containing vanadyl acetate, pyrrole and GO to get V2O5/PPy/GO nanocomposite. Characterization of the electrode material is carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The electrochemical performance of the as-prepared nanocomposite is evaluated by... 

    Synthesis of carbon-based spinel nico2o4 nanocomposite and its application as an electrochemical capacitor

    , Article Journal of Electronic Materials ; Volume 46, Issue 8 , 2017 , Pages 4948-4954 ; 03615235 (ISSN) Shahraki, M ; Elyasi, S ; Heydari, H ; Dalir, N ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this study, a thermal method was used to synthesize spinel NiCo2O4 and carbon nanotubes (CNTs)@NiCo2O4 with an average size 50 nm and 20 nm, respectively. Addition of CNTs into NiCo2O4 noticeably increases the active surface area compared to pure spinel NiCo2O4. SEM analyses showed that the morphologies are spherical in both pure and composite samples. Uniform CNTs@NiCo2O4 nanoparticles exhibit high specific capacitance of 210 F g−1 at 2 A g−1 and a good retention capacity of 92.70% after 2500 cycles, which shows a considerable improvement compared to NiCo2O4. Additionally, an exceptional rate capability of about 73.2% was obtained at 50 A g−1. Such remarkable electrochemical performance... 

    Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes

    , Article Journal of Energy Chemistry ; Volume 26, Issue 4 , 2017 , Pages 762-767 ; 20954956 (ISSN) Heydari, H ; Moosavifard, S. E ; Shahraki, M ; Elyasi, S ; Sharif University of Technology
    Abstract
    In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls (<10 nm) and relatively large specific surface area of 65 m2/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814 F/g at 1 A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50 A/g, and outstanding... 

    A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 12 , 2017 , Pages 6508-6519 ; 19327447 (ISSN) Asen, P ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    A simple and low-cost electrochemical deposition method is used to prepare reduced graphene oxide/polypyrrole/Cu2O-Cu(OH)2 (RGO/PPy/Cu2O-Cu(OH)2) ternary nanocomposites as the electrode material for supercapacitor application. First, graphene oxide-polypyrrole (GO/PPy) nanocomposite is electrochemically synthesized on Ni foam by electro-oxidation of pyrrole monomer in an aqueous solution containing GO and Tiron. Subsequently, the GO/PPy film is converted to the corresponding reduced form (RGO/PPy) by an effective and eco-friendly electrochemical reduction method. Then, a thin layer of Cu2O-Cu(OH)2 is formed on RGO/PPy film by chronoamperometry. The RGO/PPy/Cu2O-Cu(OH)2 nanocomposite is... 

    Silver fiber fabric as the current collector for preparation of graphene- based supercapacitors

    , Article Electrochimica Acta ; Volume 227 , 2017 , Pages 246-254 ; 00134686 (ISSN) Mehrabi Matin, B ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    During the past few years, a considerable attention has been devoted to the development of textile- based energy storage devices and wearable electronics applications. In this paper, for the first time, we report a flexible high performance graphene-based supercapacitor using silver fiber fabric as the current collector. The silver fiber fabric offers remarkable advantages such as light weight, mechanical flexibility and ease of integration with electronic textiles, which well-suited for wearable energy storage devices. A new hybrid material of graphene-silver fiber fabric (rGO/SFF) was prepared through a facile electrophoretic deposition of graphene and being used as a binder-free flexible... 

    Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    , Article Applied Surface Science ; Volume 394 , 2017 , Pages 425-430 ; 01694332 (ISSN) Heydari, H ; Moosavifard, S. E ; Elyasi, S ; Shahraki, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m2 g−1) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Electric field enhanced synthesis of copper hydroxide nanostructures for supercapacitor application

    , Article Nano ; Volume 12, Issue 1 , 2017 ; 17932920 (ISSN) Sepahvand, S ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    Electric field enhanced approach has been used to synthesize different copper hydroxide morphologies as high-performance supercapacitors electrode materials. Employing this efficient, simple and low cost method, various shapes such as rod, flower and cube with an average grain size of 30nm to 1μm were obtained on the copper substrate. The results revealed that applied electric field considerably accelerates the formation time of nanostructures from several days to close to 1min, where some of the desired nanostructures were obtained even in 1s. The electrochemical properties of different morphologies were compared using cyclic voltammograms and charge/discharge tests and electrochemical... 

    Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors

    , Article Journal of Materials Chemistry A ; Volume 5, Issue 24 , 2017 , Pages 12569-12577 ; 20507488 (ISSN) Qorbani, M ; Chou, T. C ; Lee, Y. H ; Samireddi, S ; Naseri, N ; Ganguly, A ; Esfandiar, A ; Wang, C. H ; Chen, L. C ; Chen, K. H ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    The controlled growth of metal oxide nanostructures within hierarchically porous conductive carbon-based frameworks is critically important to achieving high volumetric performance and appropriate channel size for energy storage applications. Herein, we grow cobalt oxide (Co3O4) nanoflakes, using a sequential-electrodeposition process, into spherically porous sponge-like few-layer partially reduced graphene oxide (SrGO) synthesized by template-directed ordered assembly. Maximum specific/volumetric capacitances of 1112 F gCo3O4-1 (at 3.3 A gCo3O4-1), 178 F cm-3 (at 2.6 A cm-2), and 406 F gtotal-1 (at 1 A gtotal-1) and sensible rate capability (80% retention by increasing the charge/discharge... 

    High-Performance fiber-shaped flexible asymmetric microsupercapacitor based on ni(oh)2 nanoparticles-decorated porous dendritic ni-cu film/cu wire and reduced graphene oxide/carbon fiber electrodes

    , Article ACS Sustainable Chemistry and Engineering ; Volume 6, Issue 11 , 2018 , Pages 14574-14588 ; 21680485 (ISSN) Shahrokhian, S ; Naderi, L ; Mohammadi, R ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Miniaturization of electronic devices with portable, flexible and wearable characteristics created a great demand for high-performance microscale energy storage devices with lightweight and flexible properties. Among the energy storage devices, wire-shaped supercapacitors (WSSCs) have recently received tremendous attention due to their tiny volume, wearability, high flexibility and potential applications in the next-generation portable/wearable electronic devices. Herein, we successfully fabricated a porous dendritic Ni-Cu film on Cu wire substrate (CWE) for fabrication of high-performance wire-type supercapacitors. The porous structure with dendritic morphology provides a high surface area,... 

    Fabrication and the electrochemical activation of network-like MnO2 nanoflakes as a flexible and large-area supercapacitor electrode

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 11 , 2018 , Pages 3507-3514 ; 14328488 (ISSN) Mardi, S ; Moradlou, O ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    Porous network-like MnO2 thick films are successfully synthesized on a flexible stainless steel (SS) mesh using a simple and low-cost electrodeposition method followed by an electrochemical activation process. Morphology, chemical composition, and crystal structure of the prepared electrodes before and after the activation process are determined and compared by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The results show that the implementation of the electrochemical activation process does not change the chemical composition and crystal structure of the films, but it influences the surface morphology of the MnO2... 

    Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application

    , Article Journal of Electroanalytical Chemistry ; Volume 823 , 2018 , Pages 505-516 ; 15726657 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this work, nanostructured composites of Cr2O3-graphene oxide (Cr2O3/GO) with conducting polymers; polyaniline (PANI) and polypyrrole (PPy) with the shape of cauliflower were synthesized via s simple and low cost one-step chronoamperometry method. The structures and morphologies of the resulting ternary nanocomposites were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical capacitive properties of the prepared nanocomposites were evaluated by using cycle voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The... 

    Preparation of flexible and free-standing graphene-based current collector via a new and facile self-assembly approach: leading to a high performance porous graphene/polyaniline supercapacitor

    , Article Energy ; Volume 152 , 2018 , Pages 178-189 ; 03605442 (ISSN) Pourjavadi, A ; Doroudian, M ; Ahadpour, A ; Pourbadiei, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Flexible all-solid-state supercapacitors are promising electronic devices have been developed in the past decade. Recent efforts to develop such systems are as to construction of free standing electrodes with high specific capacitance. Among these developments, construction of carbon-based current collectors, with high surface areas and good mechanical properties via a facile and economic way, has been taken a great deal of attention. In this study, porous graphene were used as current collector for placement of the carbon fibers functionalized with polyaniline, to prepare a free-standing supercapacitor electrode through a new and facile method. This method begins through blending of the... 

    Advanced binder-free electrode based on core–shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors

    , Article Chemical Engineering Journal ; Volume 341 , 2018 , Pages 10-26 ; 13858947 (ISSN) Hosseini, H ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The development of thin layer structures on flexible current collectors has become as an effective strategy for preparing advanced portable and wearable power sources. Herein, a flexible and efficient electrode was fabricated based on electrospun porous carbon nanofibers (PCNFs) substrate with elaborately designed thin layer Co3V2O8-Ni3V2O8 core–shell nanostructures (Co3V2O8-Ni3V2O8 TLs@PCNFs). The resulting free-standing Co3V2O8-Ni3V2O8 TLs@PCNFs composite was used directly as a flexible electrode in three electrode system for supercapacitor studies without the need for utilization of either binder or metal-based current collector. The unique thin layer structure of Co3V2O8-Ni3V2O8... 

    An efficient two-step approach for improvement of graphene aerogel characteristics in preparation of supercapacitor electrodes

    , Article Journal of Energy Storage ; Volume 17 , 2018 , Pages 465-473 ; 2352152X (ISSN) Jokar, E ; Shahrokhian, S ; zad, A. I ; Asadian, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    We fabricated a high rate capability supercapacitor based on fluorine-doped graphene-carbon nanotubes aerogel network (G-CNT-F). Based on the electrochemical impedance spectroscopy data, the fluorination decreases the charge transfer resistance of graphene sheets, while CNTs act as spacer in the 3D structure. Therefore, both treatments improved the electrochemical properties of the resulted aerogel. Based on the Fourier transform infrared spectroscopy and XPS results, these excellent performances are attributed to semi-ionic bonds between fluorine and carbon. The specific capacitance of the graphene aerogel showed 78% decrease, when discharge current increases from 2 to 40 mA, while the... 

    Iron‑vanadium oxysulfide nanostructures as novel electrode materials for supercapacitor applications

    , Article Journal of Electroanalytical Chemistry ; Volume 818 , 2018 , Pages 157-167 ; 15726657 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, Azam ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Iron‑vanadium oxysulfide (Fe-VO-S) nanostructures with different Fe:VO atomic ratios are synthesized by a facile and low cost electrochemical deposition method. The synthesis of the various samples is confirmed by the physicochemical characterizations such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). For different Fe-VO-S nanostructures, the correlation between the physicochemical and the electrochemical properties is investigated. It is found that the Fe:VO atomic ratio has an important effect on the structure and size of the resulted particles....