Loading...
Search for: surface-active-agents
0.005 seconds
Total 151 records

    Worm-like micelles:a new approach for heavy oil recovery from fractured systems

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 5 , 2015 , Pages 951-958 ; 00084034 (ISSN) Kianinejad, A ; Saidian, M ; Mavaddat, M ; Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    In this work, a new type of flooding system, "worm-like micelles", in enhanced heavy oil recovery (EOR) has been introduced. Application of these types of surfactants, because of their intriguing and surprising behaviour, is attractive for EOR studies. Fundamental understanding of the sweep efficiencies as well as displacement mechanisms of this flooding system in heterogeneous systems especially for heavy oils remains a topic of debate in the literature. Worm-like micellar surfactant solutions are made up of highly flexible cylindrical aggregates. Such micellar solutions display high surface activity and high viscoelasticity, making them attractive in practical applications for EOR. In this... 

    Surfactant effects on the efficiency of oil sweeping from the dead ends: Numerical simulation and experimental investigation

    , Article Chemical Engineering Research and Design ; Volume 94 , 2015 , Pages 173-181 ; 02638762 (ISSN) Kamyabi, A ; Ramazani, S. A. A ; Kamyabi, M ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    Highlights: The objective of this work is to investigate the effects of the surfactants on the oil extraction from the dead ends through the numerical simulations and experimental evidences. The volume of fluid approach in the frame of the finite volume method has been used for numerical simulations in 2-D domain and experimental flooding tests have been done using a glassy micro-model. The effects of the water-oil, water-wall and oil-wall interfacial tensions have been investigated numerically and some results are compared to experimental flooding results. Simulations have been done in the cases of water-wet, neutralized-wet and oil-wet micro-models also. The numerical results show that in... 

    Study the effect of ultrasonic irradiation and surfactant/fe ions weight ratio on morphology and particle size of magnetite nanoparticles synthesised by co-precipitation for medical application

    , Article World Academy of Science, Engineering and Technology ; Volume 64 , 2010 , Pages 457-460 ; 2010376X (ISSN) Azimipour Meibod, S. S ; Pourafshary, P ; Madaah Hosseini, H. R ; Sharif University of Technology
    2010
    Abstract
    A biocompatible ferrofluid have been prepared by coprecipitation of FeCl 2.4H 2O and FeCl 3.6H 2O under ultrasonic irradiation and with NaOH as alkaline agent. Cystein was also used as capping agent in the solution. Magnetic properties of the produced ferrofluid were then determined by VSM test and magnetite nanoparticles were characterized by XRD and TEM techniques. The effect of surfactant to Fe ion weight ratio was also studied during this project by using two different amount of Dextran. Results showed the presence of a biocompatible superparamagnetic ferrofluid including magnetite nanoparticles with particle size ranging under 20 nm. The increase in the surfactant content results in the... 

    Surfactant binary systems: Ab initio calculations, preferential solvation, and investigation of solvatochromic parameters

    , Article Journal of Chemical and Engineering Data ; Volume 61, Issue 1 , 2016 , Pages 255-263 ; 00219568 (ISSN) Kohantorabi, M ; Salari, H ; Fakhraee, M ; Gholami, M.R ; Sharif University of Technology
    American Chemical Society 
    Abstract
    Solvatochromic UV-vis shifts of three probes 4-nitroaniline, 4-nitroanisol, and Reichardt's dye in binary mixtures of polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100 or TX-100) with methanol, ethanol, 1-propanol, and water have been investigated at 298 K. Structural and intermolecular interactions of solvatochromic probes were determined in these systems. Solvatochromic parameters, including normalized polarity (ETN), dipolarity-polarizability (π∗), hydrogen-bond donor (α), and hydrogen-bond acceptor (β) abilities, were measured at a wide range of mole fraction (0 ≤ X ≤ 1) with 0.1 increment. Interestingly, a similar behavior of ETN and α is observed in... 

    Pore-scale analysis of filtration loss control by colloidal gas aphron nano-fluids (CGANF) in heterogeneous porous media

    , Article Experimental Thermal and Fluid Science ; Volume 77 , 2016 , Pages 327-336 ; 08941777 (ISSN) Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    This study concerns micro-scale analysis of filtration loss control induced by blockage ability of a new colloidal gas fluid, Colloidal Gas Aphron Nano-Fluid (CGANF) in fractured porous media. Fumed silica nanoparticles and a novel environmentally friendly bio surfactant, Olea Europaea, were used for monitoring CGANF displacements in heterogeneous micromodels including single fracture. Analysis of pressure drop along the micromodel during tests showed an increasing resistance to flow of CGANF dispersion through porous media as more CGANF was injected. When lamella division occurs, more small bubbles are formed and then pressure drop through porous media increases. Small bubbles play an... 

    Improvements in permeation and fouling resistance of PVC ultrafiltration membranes via addition of Tetronic-1107 and Triton X-100 as two non-ionic and hydrophilic surfactants

    , Article Water Science and Technology ; Volume 74, Issue 6 , 2016 , Pages 1469-1483 ; 02731223 (ISSN) Rabiee, H ; Seyedi, S. M ; Rabiei, H ; Alvandifar, N ; Sharif University of Technology
    IWA Publishing 
    Abstract
    Two non-ionic and hydrophilic surfactant additives, Tetronic-1107 and Triton X-100, were added to poly(vinyl chloride)/NMP polymeric solution to prepare ultrafiltration membranes via immersion precipitation. Surfactants at three different weight percentages up to 6 wt% were added, and the fabricated membranes were characterized and their performance for water treatment in the presence of bovine serum albumin (BSA) as a foulant was assessed. The scanning electron microscopy images indicated remarkable changes in morphology due to higher thermodynamic instability after surfactant addition. The membranes are more porous with more macro-voids in the sub-layer. Plus, the membranes become more... 

    Enhanced soil remediation via plant-based surfactant compounds from acanthophyllum laxiusculum

    , Article Tenside, Surfactants, Detergents ; Volume 53, Issue 4 , 2016 , Pages 324-331 ; 09323414 (ISSN) Soltaninejad, H ; Bagheri Lotfabad, T ; Yaghmaei, S ; Sharif University of Technology
    Carl Hanser Verlag 
    Abstract
    In the present study, an aqueous root-extract of Acanthophyllum laxiusculum (AREAL) was evaluated for phenanthrene removal from two samples of contaminated soil. AREAL showed a linear solubilization enhancement for phenanthrene with a weight solubilization ratio of 0.05. Batch soil washing experiments caused the removal of phenanthrene with efficiencies of 96.7% and 78% from soils with 0.78% and 2.73% organic carbon, respectively. Desorption kinetics of phenanthrene exhibited a twophase pattern, namely, a rapid release as the initial phase and a slower removal as a subsequent phase. A two-compartment exponential model could adequately represent the two phases of the kinetic pattern of... 

    Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner

    , Article Cellulose ; Volume 24, Issue 10 , 2017 , Pages 4217-4234 ; 09690239 (ISSN) Masoudipour, E ; Kashanian, S ; Hemati Azandaryani, A ; Omidfar, K ; Bazyar, E ; Sharif University of Technology
    Abstract
    Storage conditions seem to be important in the long-term stability of nanoparticles (NPs). This work studies the effects of surfactants and storage container on particle size distribution and zeta potential during long-term storage of acid hydrolyzed potato starch NPs. The NPs were prepared from potato starch using acid hydrolysis and high-intensity ultrasonication. During the ultrasonic treatment, the surfactants were added dropwise to the solutions to reduce the size and stabilize the formed NPs. Particle size distribution, zeta potential, and FE-SEM were used to characterize the ensuing NPs. Additionally, a 5-month stability study was performed to evaluate the maintenance of potato starch... 

    Evaluation of effect of temperature and pressure on the dynamic interfacial tension of crude oil/aqueous solutions containing chloride anion through experimental and modelling approaches

    , Article Canadian Journal of Chemical Engineering ; 2017 ; 00084034 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    The interfacial properties of crude oil are highly complex and are not yet well understood. This study aimed to evaluate the effect of temperature (30-80°C) and pressure (3.44-27.58MPa) on the dynamic interfacial tension (IFT) of crude oil/aqueous solutions consisting of 15000ppm of salt containing different chloride anions, e.g. NaCl, KCl, MgCl2, and CaCl2. To reach this goal, several parameters, such as dynamic and equilibrium IFT, adsorption time, diffusivity of resin, and asphaltene as surface-active agents from bulk of crude oil towards fluid/fluid interface and surface excess concentration of them at the interface, were compared as a function of temperature, pressure, and ion type. The... 

    ANFIS modeling of rhamnolipid breakthrough curves on activated carbon

    , Article Chemical Engineering Research and Design ; Volume 126 , 2017 , Pages 67-75 ; 02638762 (ISSN) Baghban, A ; Sasanipour, J ; Haratipour, P ; Alizad, M ; Vafaee Ayouri, M ; Sharif University of Technology
    Institution of Chemical Engineers  2017
    Abstract
    Owning to interesting properties of biosurfactants such as biodegradability and lower toxicity, they have broad application in the food industry, healthy products, and bioremediation as well as for oil recovery. The present study was aimed to develop a GA-ANFIS model for predicting the breakthrough curves for rhamnolipid adsorption over activated carbon. To that end, a set of 296 adsorption data points were utilized to train the proposed FIS structure. Different graphical and statistical methods were also used to evaluate the model's accuracy and reliability. Results were then compared to those of the previously reported Artificial Neural Network (ANN) and Group Method Data Handling (GMDH)... 

    Investigation of ionic liquids based on pyridinium and imidazolium as interfacial tension reducer of crude Oil−water and their synergism with MgCl2

    , Article Journal of Petroleum Science and Engineering ; Volume 171 , 2018 , Pages 414-421 ; 09204105 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Ionic liquids (ILs) can be tailored as chemical surfactants and surface active agents to reduce the interfacial tension (IFT) of crude oil/aqueous solutions for enhanced oil recovery processes. The current investigation was aimed to explore the nature of ingenious active agents in crude oil, including asphaltene and resin, and their possible interactions with two families of ILs, namely pyridinium and imidazolium, on the IFT of crude oil/aqueous solutions, both in the presence and absence of MgCl2. To the best of our knowledge, the effect of crude oil type on the IFT of crude oil/aqueous solution containing salts and IL has not been ever investigated. Accordingly, IFTs of light, medium and... 

    Experimental investigation of triton X-100 solution on pulsating heat pipe thermal performance

    , Article Journal of Thermophysics and Heat Transfer ; Volume 32, Issue 3 , 2018 , Pages 806-812 ; 08878722 (ISSN) Nazari, M. A ; Ghasempour, R ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2018
    Abstract
    Pulsating heat pipes are cooling devices that are partially filled with working fluid. Working fluid thermophysical properties affect the thermal performance of pulsating heat pipes. In this research, the effect of adding a Triton X-100 surfactant to pure water and using the mixture as a working fluid is investigated experimentally. The results indicate that adding surfactant leads to improvement in the thermal performance of the pulsating heat pipe. In particular, the maximum of the thermal resistance improvement is about 61%, which is attributed to 0.01% surfactant concentration. Higher heat transfer ability is attributed to lower surface tension and the contact angle of the mixture... 

    Evaluation of effect of temperature and pressure on the dynamic interfacial tension of crude oil/aqueous solutions containing chloride anion through experimental and modelling approaches

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 6 , 2018 , Pages 1396-1402 ; 00084034 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    The interfacial properties of crude oil are highly complex and are not yet well understood. This study aimed to evaluate the effect of temperature (30–80 °C) and pressure (3.44–27.58 MPa) on the dynamic interfacial tension (IFT) of crude oil/aqueous solutions consisting of 15 000 ppm of salt containing different chloride anions, e.g. NaCl, KCl, MgCl2, and CaCl2. To reach this goal, several parameters, such as dynamic and equilibrium IFT, adsorption time, diffusivity of resin, and asphaltene as surface-active agents from bulk of crude oil towards fluid/fluid interface and surface excess concentration of them at the interface, were compared as a function of temperature, pressure, and ion type.... 

    Investigating the synergic effects of chemical surfactant (SDBS) and biosurfactant produced by bacterium (Enterobacter cloacae) on IFT reduction and wettability alteration during MEOR process

    , Article Journal of Molecular Liquids ; Volume 256 , 2018 , Pages 277-285 ; 01677322 (ISSN) Hajibagheri, F ; Hashemi, A ; Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In the current study, a novel approach which takes into account the effectiveness of both convectional surfactants and biosurfactants was investigated. The biosurfactant produced by Enterobacter cloacae strain was utilized concomitant with conventional surfactant (sodium dodecyl benzene sulfonate (SDBS)) to evaluate its capability to reduce the SDBS adsorption on rock surface (biosurfactant acts as sacrificial agent) or synergistically enhance the effectiveness of the SDBS. In this regard, the wettability alteration and interfacial tension (IFT) measurements and calculation of spreading coefficient were performed considering two different scenarios. In the first scenario, SDBS was added to... 

    Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering

    , Article ACS Applied Energy Materials ; Volume 2, Issue 9 , 2019 , Pages 6209-6217 ; 25740962 (ISSN) Parvazian, E ; Abdollah Zadeh, A ; Dehghani, M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Scalable coating methods have recently emerged as practical alternative deposition techniques to the conventional spin-coating despite their lower yielding power conversion efficiencies (PCEs). The most important barrier acting against the use of scalable deposition methods to get a highly absorbing (>95%) film with controlled morphology in the high crystallinity of perovskite particles is the impossibility of antisolvent dripping during the deposition. Here, we demonstrate the positive role of both the surfactant-engineering and the vacuum-annealing (<100 Pa) process in improving the device performance to overcome this limit. A detailed optimization of the vacuum-assisted meniscus printing... 

    A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 155 , 2020 Fayzi, P ; Bastani, D ; Lotfi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Various mixtures of surfactants and nanosilica particles were investigated to assess their influence on rising bubble hydrodynamics. For this purpose, local velocities of rising bubbles were measured experimentally. Also, the effects of concentration of three types of surface-modified silica nanoparticles on density, viscosity, and surface tension of surfactant solutions were determined. Experimental results revealed that the simultaneous presence of nanoparticles and surfactant molecules led to the decrease of local velocities of rising bubbles. The presence of nanoparticles in surfactant solutions leads to a more reduction of bubble local velocity. This could be caused by the formation of... 

    Effect of salts and their interaction with ingenious surfactants on the interfacial tension of crude oil/ionic solution

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 1 , January , 2020 , Pages 224-235 Lashkarbolooki, M ; Parvizi, R ; Ayatollahi, S ; Ghaseminejad Raeeni, E ; Sharif University of Technology
    Chemical Industry Press  2020
    Abstract
    Understanding the roles of asphaltene and resin as natural surfactants existed in crude oil can enlighten contradicting reported results regarding interfacial tension (IFT) of crude oil/aqueous solution as a function of salinity and ion type. In this way, this study is aimed to investigate the effect of these natural surface active agents on IFT of with special focus on SO42− anion and Mg2+ cation. Two different synthetic oil solutions of 8 wt% of the extracted asphaltene and resin dissolved in toluene are prepared, and then IFT values are measured. After that, the obtained results are compared with the IFT of intact crude oil in contact with the same saline solutions examined in the... 

    The effect of polymeric surfactant content on the mechanical properties of Al/GNP nanocomposites

    , Article Materials Chemistry and Physics ; Volume 257 , 2021 ; 02540584 (ISSN) Moradi, M ; Abouchenari, A ; Pudine, M ; Sharifianjazi, F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Graphene nanoplatelets (GNPs) are ideal reinforcements for improving the mechanical properties of aluminum-based matrices due to their outstanding properties. However, it essentially depends on their uniform dispersion in the matrix. In this study, the challenge of uniform dispersion of graphene was performed by functionalizing the non-covalent surface and sonication of GNPs applying non-ionic polymeric ethyl cellulose (EC) surfactant, in which a colloidal mixture was provided with Al powder and graphene, followed by sintering at 620 °C and consolidation. The density and mechanical properties of nanocomposite specimens were investigated and compared with a non-surfactant-assisted Al/GNP... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of...