Loading...
Search for: surface-treatment
0.008 seconds

    Thermal analysis of laser hardening for different moving patterns

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 22, Issue 2 , 2009 , Pages 169-180 ; 17281431 (ISSN) Farrahi, G. H ; Sistaninia, M ; Sharif University of Technology
    Materials and Energy Research Center  2009
    Abstract
    Transient thermal field in laser surface hardening treatment of medium carbon steel was analyzed by employing both three-dimensional analytical model and finite element model. In finite element model the laser beam was considered as a moving plane heat flux to establish the temperature rise distribution in the work-piece, while in analytical model laser beam was considered as an internal heat source. The numerical results were compared with the analytical results. In laser heat treatment of steel some methods are used to produce a wider and nearly uniform average irradiance profile. It may be achieved by rotating the beam optically, thereby producing an overlapping spiral track, or by... 

    Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating

    , Article Journal of Industrial and Engineering Chemistry ; Volume 83 , 2020 , Pages 153-163 Rahmani, P ; Shojaei, A ; Pirhady Tavandashti, N ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    In the present study, thermally oxidized nanodiamond (OND) was first modified non-covalently with dodecylamine (DDA) as corrosion inhibitor. In this respect, reactive primary amine of DDA molecule with high isoelectric point (IEP) could interact easily with negative charge carboxylic acid groups of OND. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) proved that OND nanoparticle was successfully functionalized by DDA up to approximately 5 wt% grafting contnet. Both OND and dodecylamine modified OND (DND) were loaded in epoxy (EP)/polyamine hardener matrix at the same concentration of 1 wt% and applied on mild steel substrate. Morphology of EP-DND and... 

    Optimization of shot peening effective parameters on surface hardness improvement

    , Article Metals and Materials International ; June , 2020 Maleki, E ; Unal, O ; Sharif University of Technology
    Korean Institute of Metals and Materials  2020
    Abstract
    Abstract: Shot peening is well-known process for mechanical properties integrity in metallic materials. In present study influences of different shot peening treatments on the surface hardness of different carbon steels were investigated experimentally and then alternative approach by using artificial neural network is presented for hardness prediction of the shot peened surface. After modeling a comprehensive parametric investigations and sensitivity analysis were applied according to the influence of the related effective parameters on surface hardness improvements. Graphic Abstract: [Figure not available: see fulltext.] © 2020, The Korean Institute of Metals and Materials  

    Improvement of performance of polyamide reverse osmosis membranes using dielectric barrier discharge plasma treatment as a novel surface modification method

    , Article Polymer Engineering and Science ; Volume 59 , 2019 , Pages E468-E475 ; 00323888 (ISSN) Jahangiri, F ; Asadollahi, M ; Mousavi, S. A ; Farhadi, F ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    In this research, surface modification of aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes was carried out using dielectric barrier discharge (DBD) plasma treatment to improve the performance and fouling resistance of prepared RO membranes. First, polyamide TFC RO membranes were synthesized via interfacial polymerization of m-phenylenediamine and trimesoyl chloride monomers over microporous polysulfone support membrane. Next, the DBD plasma treatment with 15 s, 30 s, 60 s, and 90 s duration was used for surface modification. The surface properties of RO membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR),... 

    Improvement of performance of polyamide reverse osmosis membranes using dielectric barrier discharge plasma treatment as a novel surface modification method

    , Article Polymer Engineering and Science ; Volume 59 , 2019 , Pages E468-E475 ; 00323888 (ISSN) Jahangiri, F ; Asadollahi, M ; Mousavi, S. A ; Farhadi, F ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    In this research, surface modification of aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes was carried out using dielectric barrier discharge (DBD) plasma treatment to improve the performance and fouling resistance of prepared RO membranes. First, polyamide TFC RO membranes were synthesized via interfacial polymerization of m-phenylenediamine and trimesoyl chloride monomers over microporous polysulfone support membrane. Next, the DBD plasma treatment with 15 s, 30 s, 60 s, and 90 s duration was used for surface modification. The surface properties of RO membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR),... 

    Improvement of performance and fouling resistance of polyamide reverse osmosis membranes using acrylamide and TiO2 nanoparticles under UV irradiation for water desalination

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 11 , 2020 Asadollahi, M ; Bastani, D ; Mousavi, S. A ; Heydari, H ; Vaghar Mousavi, D ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    The purpose of this research is to explain the surface modification of fabricated polyamide reverse osmosis (RO) membranes using UV-initiated graft polymerization at different irradiation times (15, 30, 60, and 90 s) and various acrylamide concentrations (10, 20, and 30 g L−1). Also, coating of membranes surface with various concentrations of TiO2 nanoparticles (10, 20, 30, and 50 ppm) followed by the same UV irradiation times was investigated. After that, the membranes modification was done by grafting of acrylamide blended with TiO2 nanoparticles via UV irradiation. The characterization of membranes surface properties and their performance were systematically carried out. The results... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    Modeling of shot-peening effects on the surface properties of a (Tib + Tic)/Ti-6Al-4V composite employing artificial neural networks

    , Article Materiali in Tehnologije ; Volume 50, Issue 6 , 2016 , Pages 851-860 ; 15802949 (ISSN) Maleki, E ; Zabihollah, A ; Sharif University of Technology
    Institute of Metals Technology 
    Abstract
    Titanium matrix composites (TMCs) have wide application prospects in the field of aerospace, automobile and other industries because of their good properties, such as high specific strength, good ductility, and excellent fatigue properties. However, in order to improve their fatigue strength and life, crack initiation and growth at the surface layers must be suppressed using surface treatments. Shot peening (SP) is an effective surface mechanical treatment method widely used in industry which can improve the mechanical properties of a surface. However, artificial neural networks (ANNs) have been used as an efficient approach to predict and optimize the science and engineering problems. In... 

    Characterisation of Ni-Ti intermetallic coatings formed on Cp titanium by diffusion treatment

    , Article International Journal of Surface Science and Engineering ; Volume 9, Issue 1 , 2015 , Pages 43-54 ; 1749785X (ISSN) Khosravi, G ; Sohi, M. H ; Ghasemi, H. M ; Vafadar, A. Kh ; Sharif University of Technology
    Inderscience Enterprises Ltd  2015
    Abstract
    In order to produce a thick near equi-atomic NiTi intermetallic layer on the surface of titanium plate, layers of nickel with thicknesses of 30 μm and 60 μm were electroplated on commercial pure (Cp) titanium and subsequently were heat treated at 850°C and 900°C. The effects of heat treating temperature and the thickness of electroplated nickel on the evolution of the microstructure and mechanical properties were studied. The results confirm the formation of various intermetallic layers in the coatings that substantially affect their hardness. The optimum condition for the formation of a thick NiTi intermetallic layer on the outer surface of the titanium was diffusion treatment of the sample... 

    A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening

    , Article Materials and Design ; Volume 90 , 2016 , Pages 478-487 ; 02641275 (ISSN) Mahmoudi, A. H ; Ghasemi, A ; Farrahi, G. H ; Sherafatnia, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Shot peening is one of the most effective surface strengthening treatment technologies in which compressive residual stresses are induced beneath the specimen surface. Effects of various factors on the distribution of residual stress profile induced by shot peening have been investigated by many researchers. However, initial residual stresses are one of the important factors which affect the shot peening residual stress.This study is aimed to present comprehensive numerical and experimental study on the effect of initial residual stresses on the shot peened specimen. Initial residual stresses were induced using a four-point bending rig and grinding. Incremental center hole drilling (ICHD)... 

    Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows

    , Article Carbon ; Volume 138 , 2018 , Pages 8-17 ; 00086223 (ISSN) Jannesari, M ; Akhavan, O ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Spontaneous generation of nanobubbles (NBs) was developed by using a controllable platform of superfast microvortices, based on turbulent jet flows in the presence of graphene oxide (GO) sheets. Very high energy dissipation rates through discharging warm water into cold N2 aqueous solutions resulted in creation of micro/submicro-vortices. Shear stresses in these domains generated gas local supersaturations, leading to the formation of high concentration (∼109 mL−1) of stable NBs. Introducing GO sheets into the microvortex system resulted in effective manipulation of NBs by providing energetically favorable sites for prompt heterogeneous nucleation as well as stronger shear rate fluctuations.... 

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically... 

    Inhibitory effects of functionalized indium doped ZnO nanoparticles on algal growth for preservation of adobe mud and earthen-made artworks under humid conditions

    , Article International Biodeterioration and Biodegradation ; Volume 127 , Febraury , 2018 , Pages 209-216 ; 09648305 (ISSN) Shariati, M ; Mallakin, A ; Malekmohammady, F ; Khosravi Nejad, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this article, indium doped ZnO nanoparticles (alloy nanoparticles) were investigated as inhibitors against algae growth on adobe mud and earthen artworks for surface preservation from destruction caused by micro-organisms under humid conditions, through surface modification and activation run off. Nanoparticles (NPs) were fabricated by physical vapor deposition (PVD) growth mechanism. The fabricated NPs were approximately 20 nm in size. The Chlorella vulgaris and Scenedesmus quadricauda were tested by application of indium doped ZnO nanoparticles (In/ZnO NPs) as inhibitors. As concentrations of NPs increased, the negative impacts of NPs on the algal growth were enhanced and physical... 

    Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification

    , Article International Journal of Mechanical Sciences ; Volume 137 , 2018 , Pages 171-181 ; 00207403 (ISSN) Sherafatnia, K ; Farrahi, G. H ; Mahmoudi, A. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Shot peening is the most common surface treatment employed to enhance the fatigue performance of structural metallic materials and often carried out after other surface treatments. This paper mainly focuses on the effects of initial conditions of surface such as initial stress filed and hardness profile on shot peening residual stress field. The residual stress distribution induced by shot peening is obtained using Hertzian contact theory and elastic–plastic evaluation after yielding occurred during impingement and rebound of shots. Elastic plastic calculations are performed using different hardening models considering Bauschinger effect. The present model is able to predict redistribution... 

    Mechanical, rheological and oxygen barrier properties of ethylene vinyl acetate/diamond nanocomposites for packaging applications

    , Article Diamond and Related Materials ; Volume 99 , 2019 ; 09259635 (ISSN) Amini, M ; Ramazani S. A., A ; Haddadi, S. A ; Kheradmand, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this work, the effects of the surface-modified nanodiamond particles (NDs) on the barrier, rheological, mechanical and thermal properties of ethylene vinyl acetate (EVA) composites for the packaging applications were investigated. Fourier transform infrared spectroscopy, as well as thermal gravimetric analysis were employed to study the grafting of vinyltriethoxy silane (VTS) on the surface of NDs. Afterwards, EVA samples containing 0, 0.1, 0.5, 1, 1.5 and 2 wt% of surface-modified NDs were prepared by a two-stage process including the solution and injection processes. In order to evaluate the physicochemical, rheological, mechanical and thermal properties of the EVA/NDs samples, field... 

    Efficiency improvement of solar stills through wettability alteration of the condensation surface: An experimental study

    , Article Applied Energy ; Volume 268 , 2020 Zanganeh, P ; Soltani Goharrizi, A ; Ayatollahi, S ; Feilizadeh, M ; Dashti, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The condensation process is of great importance in many heat transfer devices in which a large amount of energy must be transferred. Furthermore, condensation is a crucial part of energy conversion and affects the energy efficiency of thermal desalination plants and solar stills. During the condensation process in solar stills, an essential part of the energy is transferred through the condensation surface to produce fresh water. Therefore, the condensation surface plays a significant role in the working efficiency of solar stills. The wettability of the condensation surface influences the condensation mechanism, which, in turn, affects the efficiency of solar stills. This study aims to... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitors

    , Article Chemical Engineering Journal ; Volume 352 , 2018 , Pages 909-922 ; 13858947 (ISSN) Haddadi, S. A ; Ramazani, S. A. A ; Mahdavian, M ; Taheri, P ; Mol, J. M. C ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this work, we synthesized carbon hollow spheres (CHSs) using the silica templating method, encapsulated 2-mercaptobenzimidazole (MBI) inhibitor in the CHSs and evaluated their corrosion inhibition performance upon exposure of mild steel to a saline solution containing the released inhibitor. The effects of silica template surface modification on the CHS structure was evaluated, while the structure and morphology of the synthesized CHS was analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Raman spectroscopy and X-ray diffraction (XRD) spectroscopy. Furthermore, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy... 

    Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties

    , Article Journal of Membrane Science ; Volume 564 , 2018 , Pages 762-772 ; 03767388 (ISSN) Nouri Goushki, M ; Mousavi, S. A ; Abdekhodaie, M. J ; Sadeghi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, a new facile and cost effective method is used to modify polysulfone membrane surface in order to improve the hydrophilicity, antifouling, and blood compatibility. This modification was performed by adding two functional monomers on the dialysis membrane. Polysulfone (PSF) membranes containing polyvinylpyrrolidone were prepared via phase inversion technique. In the next step, free radical polymerization combined with surface polymerization was used to introduce acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto the polysulfone membrane surface via circulation of initiator and monomer solutions across the membrane surface, respectively. Various monomer concentrations... 

    Effects of severe plastic deformation on pre-osteoblast cell behavior and proliferation on AISI 304 and Ti-6Al-4V metallic substrates

    , Article Surface and Coatings Technology ; Volume 366 , 2019 , Pages 204-213 ; 02578972 (ISSN) Tevlek, A ; Aydın, H. M ; Maleki, E ; Varol, R ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, titanium alloy (Ti-6Al-4V) and austenitic stainless steel (AISI 304) biomedical alloys were subjected to surface severe plastic deformation (SSPD) via severe shot peening (SSP) with the conditions of A28-30 Almen intensity. SSP is widely accepted as much more effective than the conventional surface modification techniques since it forms a nano-grain layer with large number of dislocations and grain boundaries. The SSP treatment in this study was led to a very thin rough layer in Ti-6Al-4V titanium alloy compared to that of AISI 304. The thicker layer of AISI 304 was created by twin-twin intersections and a martensite structure transformations. SSP treatment was resulted in a...