Loading...
Search for: surface-treatment
0.007 seconds

    Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification

    , Article International Journal of Mechanical Sciences ; Volume 137 , 2018 , Pages 171-181 ; 00207403 (ISSN) Sherafatnia, K ; Farrahi, G. H ; Mahmoudi, A. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Shot peening is the most common surface treatment employed to enhance the fatigue performance of structural metallic materials and often carried out after other surface treatments. This paper mainly focuses on the effects of initial conditions of surface such as initial stress filed and hardness profile on shot peening residual stress field. The residual stress distribution induced by shot peening is obtained using Hertzian contact theory and elastic–plastic evaluation after yielding occurred during impingement and rebound of shots. Elastic plastic calculations are performed using different hardening models considering Bauschinger effect. The present model is able to predict redistribution... 

    Modelling of conventional and severe shot peening influence on properties of high carbon steel via artificial neural network

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 31, Issue 2 , 2018 , Pages 382-393 ; 1728144X (ISSN) Maleki, E ; Farrahi, G. H ; Sharif University of Technology
    Materials and Energy Research Center  2018
    Abstract
    Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore, artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conventional shot peening (CSP) and severe shot peening (SSP) on properties of AISI 1060 high carbon steel were modelled and compared via ANN. In order to networks training, the back propagation (BP) error algorithm is developed and data of experimental tests results are employed. Experimental data... 

    Thermal analysis of laser hardening for different moving patterns

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 22, Issue 2 , 2009 , Pages 169-180 ; 17281431 (ISSN) Farrahi, G. H ; Sistaninia, M ; Sharif University of Technology
    Materials and Energy Research Center  2009
    Abstract
    Transient thermal field in laser surface hardening treatment of medium carbon steel was analyzed by employing both three-dimensional analytical model and finite element model. In finite element model the laser beam was considered as a moving plane heat flux to establish the temperature rise distribution in the work-piece, while in analytical model laser beam was considered as an internal heat source. The numerical results were compared with the analytical results. In laser heat treatment of steel some methods are used to produce a wider and nearly uniform average irradiance profile. It may be achieved by rotating the beam optically, thereby producing an overlapping spiral track, or by... 

    Improved adhesion of NiTi wire to silicone matrix for smart composite medical applications

    , Article Materials and Design ; Volume 30, Issue 9 , 2009 , Pages 3667-3672 ; 02641275 (ISSN) Sadrnezhaad, Kh ; Hassanzadeh Nemati, N ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    Recent uses of intelligent composites in biomedical appliances aggrandize the necessity of bonding-strength improvement in NiTi/silicone matrix interface. SEM micrographs and pull-out tests are employed to determine the strength of the NiTi/silicone bonds in a flexible composite piece. Greater adhesion strengths are obtained due to the presence of thin oxide layer, surface roughness and frictional forces between the embedded-wires and the contacting phase. Effect of curing treatment on phase transformation temperatures of the wires is determined by electrical resistivity (ER) measurements. Results show that the curing treatment shifts the transition points of the wires towards higher... 

    Silver nano-islands on glass fibers using heat segregation method

    , Article Materials Chemistry and Physics ; Volume 113, Issue 1 , 2009 , Pages 63-66 ; 02540584 (ISSN) Sharifi, N ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    A new method for fabrication of silver nano-islands on glass fibers using a top-down process is introduced. A thin layer of silver chemically coated on the surface of the glass fibers evolves into silver islands by heat treatment. The effect of the concentration of the initial solution and the temperature were investigated. Segregation was more clearly observed for lower solution concentrations and higher temperatures. The temperature of 500 °C was found optimum where separated islands form. At higher temperatures, the coagulation and burial of silver islands occur. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and diffused reflectance spectroscopy (DRS) were... 

    Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    , Article Materials Science and Engineering C ; Volume 29, Issue 4 , 2009 , Pages 1491-1497 ; 09284931 (ISSN) Ramezani Saadat Abadi, A ; Mousavi, A ; Seyedjafari, E ; Poursalehi, R ; Sareh, S ; Silakhori, K ; Poorfatollah, A. A ; Shamkhali, A. N ; Sharif University of Technology
    2009
    Abstract
    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after... 

    Effect of oxidizing atmosphere on the surface of titanium dental implant material

    , Article Journal of Bionic Engineering ; Volume 16, Issue 6 , 2019 , Pages 1052-1060 ; 16726529 (ISSN) Khodaei, M ; Alizadeh, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer  2019
    Abstract
    Direct oxidation is a simple and effective method for titanium surface treatment. In this research, a titanium sample was directly oxidized at the high temperature in two different atmospheres, air and pure oxygen, to obtain better atmosphere for titanium surface treatment. The results of the Raman spectroscopy indicated that in both atmospheres, the rutile bioactive phase (TiO2) has been formed on the titanium surface. The results of X-ray diffraction (XRD) also revealed that the surface of oxygen-treated sample was composed of the rutile phase and titanium monoxide (TiO), while at the surface of the air-treated sample, the rutile phase and titanium dioxide had been formed. Further, the... 

    Mechanical, rheological and oxygen barrier properties of ethylene vinyl acetate/diamond nanocomposites for packaging applications

    , Article Diamond and Related Materials ; Volume 99 , 2019 ; 09259635 (ISSN) Amini, M ; Ramazani S. A., A ; Haddadi, S. A ; Kheradmand, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this work, the effects of the surface-modified nanodiamond particles (NDs) on the barrier, rheological, mechanical and thermal properties of ethylene vinyl acetate (EVA) composites for the packaging applications were investigated. Fourier transform infrared spectroscopy, as well as thermal gravimetric analysis were employed to study the grafting of vinyltriethoxy silane (VTS) on the surface of NDs. Afterwards, EVA samples containing 0, 0.1, 0.5, 1, 1.5 and 2 wt% of surface-modified NDs were prepared by a two-stage process including the solution and injection processes. In order to evaluate the physicochemical, rheological, mechanical and thermal properties of the EVA/NDs samples, field... 

    Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology

    , Article Journal of Polymer Research ; Volume 26, Issue 9 , 2019 ; 10229760 (ISSN) Ganj, M ; Asadollahi, M ; Mousavi, S. A ; Bastani, D ; Aghaeifard, F ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this research, polysulfone (PSf) ultrafiltration (UF) membranes were prepared by a phase inversion method. Surface modification of the PSf membranes was carried out via grafting of acrylic acid as a hydrophilic monomer by free radical graft polymerization initiated by redox reaction. A central composite design (CCD) of response surface methodology (RSM) was applied to design the experiments. The process variables were acrylic acid concentration (CAA), redox system contact time (T1), and acrylic acid polymerization time (T2), while the contact angle (CA), pure water flux (PWF), and flux recovery ratio (FRR) were considered as the responses. Analysis of variance (ANOVA) demonstrated that... 

    Hexagonal core–shell SiO2[–MOYI]Cl–]Ag nanoframeworks for efficient photodegradation of the environmental pollutants and pathogenic bacteria

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 29, Issue 4 , 2019 , Pages 1314-1323 ; 15741443 (ISSN) Padervand, M ; Asgarpour, F ; Akbari, A ; Eftekhari Sis, B ; Lammel, G ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Hexagonal core–shell SiO2[–MOYI]Cl–]Ag nanoframeworks were synthesized via surface modification of hexagonal silica nanoparticles prepared from perlite (EP) as a cheap and abundant raw material. The prepared samples were well characterized by X-ray diffraction powder (XRD), energy dispersive X-ray (EDX), diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) specific surface area analysis, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The XRD patterns confirmed that Ag and AgCl crystalline phases were successfully loaded on the surface. The TEM images were also implied that the... 

    Effects of severe plastic deformation on pre-osteoblast cell behavior and proliferation on AISI 304 and Ti-6Al-4V metallic substrates

    , Article Surface and Coatings Technology ; Volume 366 , 2019 , Pages 204-213 ; 02578972 (ISSN) Tevlek, A ; Aydın, H. M ; Maleki, E ; Varol, R ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, titanium alloy (Ti-6Al-4V) and austenitic stainless steel (AISI 304) biomedical alloys were subjected to surface severe plastic deformation (SSPD) via severe shot peening (SSP) with the conditions of A28-30 Almen intensity. SSP is widely accepted as much more effective than the conventional surface modification techniques since it forms a nano-grain layer with large number of dislocations and grain boundaries. The SSP treatment in this study was led to a very thin rough layer in Ti-6Al-4V titanium alloy compared to that of AISI 304. The thicker layer of AISI 304 was created by twin-twin intersections and a martensite structure transformations. SSP treatment was resulted in a... 

    Surface modification of carbon steel by ZnO-graphene nano-hybrid thin film

    , Article Surface and Coatings Technology ; Volume 363 , 2019 , Pages 1-11 ; 02578972 (ISSN) Razavizadeh, O ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Application of corrosion resistant coatings is one of the most widely used means of protecting steel. Zinc coated (galvanize) steel, is well known for galvanic protection of steel substrates and nowadays, particular attention has been paid to the coupling of graphene oxide (GO) with metallic materials, in order to lessen corrosion rate. In this research, an isopropanol supercritical reducing environment prepared to make zinc ions bond directly with graphene oxides, to form a button shape hybrids of ZnO-Graphene (ZnOG). The hybridized bonding between zinc and graphene oxide is confirmed by Fourier Transform Infra-Red analysis. And the morphology revealed, using a Field Emission Scanning... 

    Investigating the effects of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 176 , 2019 , Pages 471-479 ; 09277765 (ISSN) Kalhor, H. R ; Yahyazadeh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Surface functionality of nanoparticles has been pivotal in defining interactions of nanoparticles and biomolecules. To explore various functionalities on the surface of nanoparticle through a facile procedure, various carbon-based nanoparticles, modified with a specific natural amino acid, were synthesized; the amino acids were chosen in order that almost all classes of amino acids were included. After characterizations of the nanoparticles using several spectroscopic methods, the effects of surface modification of nanoparticles were examined against amyloid formation, exploiting insulin as a model amyloidogenic polypeptide. Although most amino acids afforded carbon nanoparticles, only... 

    Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304

    , Article Surface and Coatings Technology ; Volume 358 , 2019 , Pages 695-705 ; 02578972 (ISSN) Amanov, A ; Karimbaev, R ; Maleki, E ; Unal, O ; Pyun, Y. S ; Amanov, T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, the fatigue performance of AISI 304 subjected to shot peening (SP), ultrasonic nanocrystal surface modification (UNSM) and the combination of SP + UNSM processes was systematically assessed by rotary bending fatigue (RBF) tester at different stress levels. The purpose of combining SP and UNSM processes is to find out whether SP following UNSM process can further improve the fatigue life of AISI 304 in comparison with the SP and UNSM processes alone. Interestingly, the fatigue strength of AISI 304 was deteriorated by the combination of SP + UNSM processes in comparison with the UNSM process alone, but the combination of SP + UNSM processes demonstrated a higher fatigue strength... 

    Improvement of performance of polyamide reverse osmosis membranes using dielectric barrier discharge plasma treatment as a novel surface modification method

    , Article Polymer Engineering and Science ; Volume 59 , 2019 , Pages E468-E475 ; 00323888 (ISSN) Jahangiri, F ; Asadollahi, M ; Mousavi, S. A ; Farhadi, F ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    In this research, surface modification of aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes was carried out using dielectric barrier discharge (DBD) plasma treatment to improve the performance and fouling resistance of prepared RO membranes. First, polyamide TFC RO membranes were synthesized via interfacial polymerization of m-phenylenediamine and trimesoyl chloride monomers over microporous polysulfone support membrane. Next, the DBD plasma treatment with 15 s, 30 s, 60 s, and 90 s duration was used for surface modification. The surface properties of RO membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR),... 

    Improvement of performance of polyamide reverse osmosis membranes using dielectric barrier discharge plasma treatment as a novel surface modification method

    , Article Polymer Engineering and Science ; Volume 59 , 2019 , Pages E468-E475 ; 00323888 (ISSN) Jahangiri, F ; Asadollahi, M ; Mousavi, S. A ; Farhadi, F ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    In this research, surface modification of aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes was carried out using dielectric barrier discharge (DBD) plasma treatment to improve the performance and fouling resistance of prepared RO membranes. First, polyamide TFC RO membranes were synthesized via interfacial polymerization of m-phenylenediamine and trimesoyl chloride monomers over microporous polysulfone support membrane. Next, the DBD plasma treatment with 15 s, 30 s, 60 s, and 90 s duration was used for surface modification. The surface properties of RO membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR),... 

    Improvement of performance and fouling resistance of polyamide reverse osmosis membranes using acrylamide and TiO2 nanoparticles under UV irradiation for water desalination

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 11 , 2020 Asadollahi, M ; Bastani, D ; Mousavi, S. A ; Heydari, H ; Vaghar Mousavi, D ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    The purpose of this research is to explain the surface modification of fabricated polyamide reverse osmosis (RO) membranes using UV-initiated graft polymerization at different irradiation times (15, 30, 60, and 90 s) and various acrylamide concentrations (10, 20, and 30 g L−1). Also, coating of membranes surface with various concentrations of TiO2 nanoparticles (10, 20, 30, and 50 ppm) followed by the same UV irradiation times was investigated. After that, the membranes modification was done by grafting of acrylamide blended with TiO2 nanoparticles via UV irradiation. The characterization of membranes surface properties and their performance were systematically carried out. The results... 

    Wettability alteration of calcite rock from gas- repellent to gas-wet using a fluorinated nanofluid: A surface analysis study

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 Azadi Tabar, M ; Shafiei, Y ; Shayesteh, M ; Dehghan Monfared, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Wettability alteration analysis form gas-repellent to gas-wet with the aid of chemical agents has been subjected of numerous studies. However, fundamental understanding of the effect of surface tension of liquid on repellency strength, the change in the intermolecular forces due to the adsorption of nanoparticles onto the rock surfaces, and exposure of treated rock in brine are not well discussed in the available literature. In this study, X-ray diffraction, Atomic Force Microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were applied to characterize the treated and fresh samples. Dynamic and static contact angle measurements were then combined with six methods... 

    Oxidation behavior and electrical properties of de-siliconized aisi 430 alloy with mn1.5co1.5o4 coating for solid oxide fuel cell interconnect

    , Article Oxidation of Metals ; Volume 93, Issue 3-4 , 2020 , Pages 401-415 Bakhshi Zadeh, A ; Salmani, S ; Faghihi Sani, M. A ; Abdoli, H ; Jalili, N ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: The effect of de-siliconization on the oxidation behavior of AISI 430 stainless steel used for solid oxide fuel cell interconnect application was investigated. De-siliconization treatment was conducted via heating steel parts in an H2 environment. The de-siliconized substrates were then coated with a Mn1.5Co1.5O4 spinel coating, using wet spray method. For comparison, a similar coating process was applied on the as-received AISI 430 stainless steel specimens. Oxidation kinetics of coated interconnects were evaluated at 700, 800 and 900 °C in air. Results showed that the de-siliconization surface treatment decreased oxidation rates, with kinetic rates (g2 cm−4 s−1) of 4.39 × 10−14... 

    Surface treatment of perovskite layer with guanidinium iodide leads to enhanced moisture stability and improved efficiency of perovskite solar cells

    , Article Advanced Materials Interfaces ; Volume 7, Issue 14 , 2020 Chavan, R. D ; Prochowicz, D ; Tavakoli, M. M ; Yadav, P ; Hong, C. K ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Interfacial engineering between the perovskite and hole transport layers has emerged as an effective way to improve perovskite solar cell (PSC) performance. A variety of organic halide salts are developed to passivate the traps and enhance the charge carrier transport. Here, the use of guanidinium iodide (GuaI) for interfacial modification of mixed-cation (Cs)x(FA)1−xPbI3 perovskite films, which results in the formation of a low-dimensional δ-FAPbI3-like phase on the 3D perovskite surface, is reported. The presence of this thin layer facilitates charge transfer at interfaces and reduces charge carrier recombination pathways as evidenced by enhanced carrier lifetimes and favorable interfacial...